\$ 000: 311

Sample Disposition Record

Control #:

B99-007

Revision#:

0

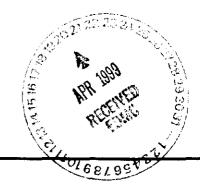
Date Initiated:

12/4/98

Maria Maria

Section 1 - BACKGROUND

SAF#: B98-059


OU: N/A

Project ID: 202-S Building

Task ID: 1

Sampling Event: 202-S Building - Plutonium Loadout Hood

Laboratory: 222-S Lab Operations
Project Coordinator: WEISS, RL
Task Manager: GALGOUL, MJ

Section 2 - SAMPLE INFORMATION

Number of Samples: 12

ID Numbers: B0PC24, B0PC27, B0PC28, B0PC29, B0PC30, B0PC31, B0PC23, B0PC22, B0PK79, B0PC26, B0PK78,

B0PC25
MATRIX: Other Solid

Collection Date:

Section 3 - ISSUE

Class: Lab Direction NCR Number: N/A

Type: Revision of Direction - Cancellation of Analyses
Description: Deletion of ICP-MS analysis for actinides

N/A

NCR Validation (Print/Sign)

Date

Section 4 - DISPOSITION

Type: Use As Is

Description: The 222-S laboratory experienced an equipment outage that impacted the ICP-MS analysis for actinides on

the listed samples. The laboratory has agreed to run Alpha Energy Analysis in place of the ICP-MS for no additional cost to the ERC on samples where ICP-MS was the only requested method for determining

Actinide concentration/

WEISS, RL

12/4/98

Project Coordinator (Print/Sign)

GALGOUL, MJ

Date

Task Manager (Print/Sign)

Date

N/A

QA (Print/Sign)

Date

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number:

N/A

Inspection Results:

N/A

N/A

Inspector (Print/Sign)

Date

WASTE MANAGEMENT FEDERAL SERVICES
OF HANFORD, INC.
A WASTE MANAGEMENT COMPANY

P.O. Box 700 Richland, WA 99352-0700

January 14, 1999

J. H. Kessner, Program Manager Analytical Services Bechtel Hanford, Inc. H9-03 3350 George Washington Way Richland, Washington 99352 WMH-9950233

JAN 1999 RECEIVED Data Log In

Dear Ms. Kessner:

CORRECTED RESULTS FOR REDUCTION OXIDATION FACILITY (202-S) PLUTONIÚM LOADOUT

Reference: External letter, R.A. Esch, WHC, to J. H. Kessner, BHI, "Final Report for the

Reduction Oxidation Facility (202-S) Plutonium Loadout Hood Samples." WMH-

9860237, dated December 3, 1998.

This letter presents corrections to the results previously presented in the referenced letter. As explained in the referenced letter report, the plutonium/americium analysis of the pipe leachate was going to be repeated due to a discrepancy in the results compared to the total alpha results. The bulk density for the sludge sample as received was reported incorrectly in the summary table. Reanalysis of the acid leach of the tech smear BOPK78 was performed to resolve a question concerning a possible discrepancy between the total alpha and plutonium/americium results. Finally, a discrepancy was noted concerning the large difference between the ²⁴¹Am results from alpha counting and GEA. These results were recalculated after it was discovered that a digest factor was missing for the GEA results. Please replace the ten pages contained in Attachment 2 of the WHC-9860237 with the pages contained in Attachment 1 of this letter.

Additional analyte information was requested from the ICP analysis of the sump liquid sample. This information is contained in Attachment 2 of this letter.

One further request concerned the lack of discussion in the referenced letter concerning the PCB analysis. Upon further examination of the reported results, it was determined that the information presented for the surrogate standards was misleading. For the surrogate standards, tetrachlorom-xylene and decachlorobiphenyl, the result expected for each column heading is the surrogate recovery for that analysis portion (i.e. standard, blank, sample, duplicate). For the columns headed "Standard %", "Blank" and "Result", the reported results are correct. However, the surrogate results presented in the columns headed "Duplicate", "Average" and "RPD%" are mislabeled. The "Duplicate" and "Average" columns give the measured and average concentrations of the surrogate standards, not the surrogate recovery for those portions. The "RPD%: column shows the surrogate recovery for the duplicate aliquot, not an RPD.

Furthermore, low surrogate recoveries (16.75% and 14.2%) were obtained for the tetrachloro-m-xylene surrogate for the sample and duplicate aliquots of the liquid from the sump sample. Surrogate recoveries less than 50% are not acceptable. The recovery for the laboratory control sample was good (98.25%) and the surrogate recoveries for decachlorobiphenyl were good (>50% recovery).

Through previous experience it has been demonstrated that under conditions of low pH (pH <1) and high concentration of nitrate (as we have with the sump liquid), nitration reactions can occur with reactive surrogates such as tetrachloro-m-xylene or phenols. Several non-PCB peaks observed in the sample chromatograms are consistent with the formation of nitrated derivatives of the tetrachloro-m-xylene. Since PCBs and decachlorobiphenyl do not react under such conditions, the low recovery of the one surrogate due to matrix reaction does not invalidate the reported results for the PCBs.

If you have any questions, please call me at 373-4314.

Very truly yours,

R. A. Esch, Project Coordinator

Ridh & En

Facility Planning 222-S Laboratory

Waste Management Laboratory

ap

Attachments (2)

WASTE MANAGEMENT FEDERAL SERVICES OF HANFORD, INC.

A WASTE MANAGEMENT COMPANY

P.O. Box 700 Richland, WA 99352-0700

Lecember 3, 1998

WMH-9860237

J. H. Kessner, Program Manager Analytical Services Bechtel Hanford, Inc. H9-03 Post Office Box 969 Richland, Washington 99352

Dear Ms. Kessner:

FINAL REPORT FOR THE REDUCTION OXIDATION FACILITY (202-S) PLUTONIUM LOADOUT HOOD SAMPLES

This letter serves as the final analytical summary report for the sludge, pipe and technical smear samples received from the 202-S Facility plutonium loadout (Pu loadout) hood. Analyses were performed in accordance with the "Letter of Instruction for the Sample Analysis of the Reduction Oxidation Facility (202-S) Plutonium Loadout Hood," which is referenced in the attached narrative. The attachments provide the following information:

Attachment 1:

Narrative

Attachment 2:

Data Summary Report

Attachment 3:

Sample Breakdown Diagrams Chain-of-Custody Forms

Attachment 4: Attachment 5:

chain-or-custody rorms

Accaciment 5.

Sample Disposition Records

Attachment 6:

Analytical Report for Project 202-S Pu Loadout Hood Hexone

Analysis - FR8-8016

If you have any questions, please call me on 373-4314.

Sincerely,

R. A. Esch, Project Coordinator

Buth all

Facility Planning

222-S Laboratory

Waste Management Laboratory

amf

Attachments (6)

WMH-9860237

Attachment 1

Narrative

Consisting of 9 Pages including cover page

WASTE MANAGEMENT LABORATORY

FINAL REPORT FOR THE REDUCTION OXIDATION FACILITY (202-S) PLUTONIUM LOADOUT HOOD SAMPLES

This document is the final analytical summary report for the analysis of samples from the Reduction Oxidation (REDOX) Facility (202-S) plutonium loadout (Pu Loadout) hood. The 222-S Laboratory received eight samples (one sludge from the sump, one piece of process pipe and six technical smears) from 202-S between August 25 and August 31, 1998. Analyses were performed in accordance with the Letter of Instruction for the Sample Analysis of the Reduction Oxidation Facility (202-S) Plutonium Loadout Hood (LOI) (McGuire 1998) and the Sampling and Analysis Plan for the REDOX Plutonium Loadout Hood (SAP) (DOE/RL 1998). The analytical results are included in the Data Summary Report (Attachment 2).

This project was split into two sets of analyses to be performed during fiscal year 1998 and fiscal year 1999. Specific information for which analyses to perform for each part of the project was provided in the *Letter of Instruction for Fiscal Year 1998 REDOX (202-S) Plutonium Loadout Hood Sample Analysis* (McGuire 1998a). Changes to sample handling and analysis were transmitted to the laboratory by means of the sample disposition records (SDR), which are included in Attachment 5.

Appearance and Sample Handling

Attachment 3 is provided as a cross-reference for relating the customer identification numbers to the 222-S Laboratory sample numbers and the portion of sample analyzed. The samples were prepared as described below.

BOPC22 – process vessel pipe. The piece of pipe was 21.4 cm in length with an inside diameter of 2.6 cm and an outside diameter of 3.5 cm. Although there appeared to be a light coating of brown material and metal filings on the interior of the pipe, there were not enough solids in the pipe to obtain a subsample by scraping the interior. Therefore, the interior of the pipe was leached with a 2M concentration of trace metal grade nitric acid (density of acid = 1.05 g/mL). A SDR was received for concurrence of this deviation.

A rubber stopper was placed in one end of the pipe. Approximately 103 mL of acid was added and a second stopper was inserted into the other end of the pipe. The pipe was allowed to stand with the acid for 22 - 23 hours. The liquid was transferred to a pre-weighed sample jar and the jar with the acid was weighed. The process was repeated with a second acid aliquot of approximately 97 mL.

The final weight of acid was 207.95 g. The final volume of 198 mL was calculated by correcting for the density. The pipe was too heavy to weigh on any of the conventional laboratory balances, which have a maximum capacity of 500 g. Therefore, an estimated weight of 0.6 kg was determined by placing the bag containing both the pipe and paper towel used for padding on the large scale that is used for weighing large waste drums.

The entire volume of acid was submitted for analysis. The results were reported as $\mu g/mL$ or $\mu Ci/mL$ of leachate.

<u>BOPC23</u> – sludge from the sump. This sample was described on the chain-of-custody form as sludge but was actually about 40 mL of slurry that contained about 40% – 50% settled solids. At first the entire sample appeared to be very dark green-blue in color. However, after allowing the solids to settle, when the bottle was carefully tipped it was apparent that the solids were green-blue and adhered to the side of the sample jar. The liquid alone was actually redder in color.

Since the sample contained a significant amount of liquid, a SDR was received requesting that the sample be centrifuged to separate the solid and liquid. There was 25.7% centrifuged solids by volume. The bulk density of the entire slurry sample was 1.54 g/mL, the centrifuged solid portion was 1.55 g/mL and the liquid density was 1.53 g/mL. The two portions were analyzed separately.

Following centrifugation the solids appeared to be a mixture of various sizes of sand-like material. Most of the solid had a fine texture and was tan in color. There were some solids that had a "salt & pepper" appearance and there were also some coarser textured solids that had a very dark green color. The solids were stirred to homogenize prior to subsampling for analysis.

Technical smear media

The sample preparation prior to analysis was identical for each of the following six samples:

BOPC24 – technical smear from the floor of the hood.

BOPC25 – technical smear from the Tank E16.

BOPC26 - technical smear from Tank E21.

BOPC27 – technical smear from Tank E19.

BOPC28 – technical smear from Tank E17.

BOPK78 – technical smear of the leak from L-16.

An acid digest was performed to leach any radionuclides from the filter media. One aliquot was prepared for each sample by using all filters from each sample's container. The final volume of

each sample aliquot was 50 mL. Although the results in Attachment 2 are reported as $\mu \text{Ci/g}$, the data were corrected for the total sample volume and, therefore, the results reflect the total μCi per sample.

Analytical Results Summary

The data summary report included as Attachment 2 presents the analytical results.

In this table, the aliquot class (A#) column indicates the type of preparation performed prior to analysis. An "A" indicates the acid digestion of the centrifuged solid, a "D" the acid dilution of the sludge liquid, a "C" the acid digestion of the liquid from the Toxicity Characteristics Leachate Procedure (TCLP) extract, a "W" the water digest of the centrifuged solid and a blank indicates that the sample was analyzed directly.

The LOI (McGuire 1998) requested that all non-radionuclide analyses, with the exceptions of pH and physical measurements, be analyzed using SW-846 methods. The procedures used by the 222-S Laboratory are considered SW-846 equivalent. Deviations are made to accommodate smaller sample sizes for handling samples with radionuclides present.

Quality Control (QC)

A standard and blank was analyzed with every batch. One duplicate analysis was performed per matrix. That is, the centrifuged solid and the liquid from the sludge were analyzed in duplicate. For all other samples, only a single sample portion was analyzed.

The standard recoveries were all within the acceptance limits of the methods. The relative percent difference (RPD) between sample and duplicate analyses were all less than 20% except for neptunium-237 (237 Np) on the centrifuged solid (RPD = 100%) and oxalate (66.2%) on the liquid from the sump sludge. No reanalysis was performed because the results for both analytes were only about two times the detection limit, where the precision of the analysis is poor. In both analyses, the largest possible sample size was used and a reanalysis would not likely improve the quality of the results.

The standard results that were reported for the mercury and inductively coupled plasma (ICP) analyses for the Toxicity Characteristics Leachate Procedure (TCLP) reflect the recovery of a certified standard that went through the leaching process. Mercury, barium, chromium and lead all had low recoveries for this standard. The instrument control standard recoveries for these analytes were all within the acceptance limits of the procedures. Since the analysis of a leached

standard was not required, and there was insufficient solid to repeat the TCLP extraction, no reanalysis was performed.

Detection Limits

The LOI (McGuire 1998) requested that the laboratory meet the detection limits (DLs) listed in the SAP (DOE/RL 1998) whenever possible. If sample conditions prevented the achievement of the DLs, the laboratory was requested to meet the target practical quantitation limits (PQLs) provided in the LOI (McGuire 1998). In most cases, the DLs and or the PQLs were met.

Certain detection limits were not met due to dilutions required because of high concentrations of other analytes in multielement methods: plutonium-238 (238Pu) and curium-243/244 (243/244Cm) in the Pu/Americium analysis, nitrite and phosphate in the ion chromatography (IC) analysis and lead and selenium in the ICP analysis. Sample reanalysis was not performed because the sample size is limited by the concentration of the prominent analyte and, therefore, the detection limit cannot be improved.

For the pipe leachate, the detection limit reported for cesium-137 (137 Cs) was 1.61e-06 μ Ci/mL. The requested PQL was 1.0e-06 μ Ci/mL. A larger sample size could have been used, but since the reported detection limit was only slightly higher than the PQL, no reanalysis was performed.

The plutonium, americium and curium detection limits for the pipe leachate were all several orders of magnitude above the PQLs listed in the LOI (McGuire 1998). Comparing the results to the total alpha result, it was clear that the cause for the high detection limit was a small sample size. Since this was discovered so close to the project due date, these results were reported. However, a reanalysis using a larger sample size will be performed. The results of the reanalysis will be reported in a separate letter report.

Holding Times

The SW-846 holding times were met for all analyses except for mercury analysis of the TCLP extract (28 days from extraction), pH (24 hours), nitrate, and nitrite (48 hours). The holding times for pH, nitrate and nitrite were missed because of the special handling required due to the high alpha concentration in the samples. The TCLP extraction and a preliminary analysis were performed within the required 28 days for Hg, but a reanalysis was required due to QC failures. Because of delays due to instrument failure and equipment relocations, the reanalysis was performed 60 days after the extraction, missing the holding time of 28 days. Since the average reported result of $5.50~\mu g/mL$ mercury exceeds the regulatory level of $0.2~\mu g/mL$, the procedure states that exceeding the holding time will not invalidate the characterization.

Method Specific Discussion

The methods discussed below had discrepancies or anomalies that warranted further discussion.

Asbestos Analysis

Asbestos analysis was requested for the solid from the sump sludge. The analysis is typically performed on solid residue remaining after acid digestion. Since there were no visible solids after acid digestion, this analysis was not performed.

Inductively Coupled Plasma/Mass Spectrometry (ICP/MS)

The ICP/MS analysis for actinides was requested in addition to the radionuclide analysis on the sludge sample aliquots and the leachate from the process pipe. For the technical smears, the LOI (McGuire 1998) requested only ICP/MS analysis for the actinides. However, the instrument was out-of-service for several weeks, and there was insufficient time to run the analysis prior to the report due date. A SDR was received for concurrence to omit the analysis.

Acid Dilutions

There was insufficient liquid available from the sludge sample to perform all of the requested analyses on the direct sample. Therefore, a ten-fold acid dilution was performed prior to the ICP and radionuclide analyses.

<u>Toxicity Characteristics Leachate Procedure (TCLP)</u>

Because of the limited amount of solid available, only 1 gram of sample was extracted for analysis. The normal sample size used by the laboratory is 10 grams. A SDR was received to allow this deviation. Although not required by the procedure, a certified standard was digested and analyzed with the samples.

Cadmium (Cd), chromium (Cr) and mercury (Hg) were all leached at concentrations above the regulatory levels. The average Hg result was 5.50 μ g/mL, the regulatory level is 0.2 μ g/mL. The average Cd result was 4.49 μ g/mL, the regulatory level is 1.0 μ g/mL. The average Cr result was 439 μ g/mL, the regulatory level is 5.0 μ g/mL.

Mercury Analysis (Hg)

The liquid portion of the sludge sample had a very high concentration of Hg. A 0.1-mL sample size gave a response that was well above the calibration range. Replicate dilutions were made on the digested duplicate aliquot. The two results were reported as sample and duplicate in the Data Summary Report. For additional information, and to check for interferences, post-digestion spike and post-digestion spike duplicate analyses were performed using two more dilutions of the digested duplicate aliquot. The spike recoveries were 83.2% and 96.7%, respectively. These results are reported in the raw data. The acceptable spike recoveries indicate that there were no spectral interferences causing the high results for this sample.

Hexone Analysis

Duplicate portions of the liquid and centrifuged solid from the sump sludge were sent to the Special Analytical Services (SAS) laboratory for hexone analysis. Duplicate analysis could not be performed because of unexpected clogging of the purge system. A separate narrative is provided in Attachment 5, which further discusses the results and discrepancies.

Total Alpha/Total Beta (AT/TB) Analysis

When the total alpha (AT) results are compared to the sum of the alpha emitters, there appears to be a discrepancy since the AT results are typically lower than the sum. However, the difference may be attributed to the geometry of the flood mount used for the AT and/or attenuation due to possible solids on the AT mount.

When comparing the total beta (TB) results to the sum of the beta emitters, the TB results are biased high. It was found that the high concentration of alpha emitters in the sample causes "cross talk", giving a false high beta result. To eliminate this problem in the strontium-90 (90 Sr) analysis, repeated nitric acid and hydroxide precipitations were performed to remove the alpha emitters from the sample prior to mounting for the beta counting.

Procedures

Table 1 lists the analytical procedures used for performing the analyses for this project. Abbreviations for analyses are defined in the table notes.

Table 1: Analytical Procedures

Analysis	Preparation Procedure	Analysis Procedure
,	Inorganic Analyses	
% Settled Solids	Direct Analysis	LA-519-151 Rev. F-0
Bulk Density	Direct Analysis	1.O-160-103 Rev. D-0
pH	Direct Analysis	LA-212-106 Rev. C-2
ICP	Liquid - Acid Dilution Sludge - TCLP Extract and Acid Digest	LA-505-161 Rev. C-3
IC	Liquid Direct Analysis Sludge Water Digest	LA-533-105 Rev. I-0
Har	Liquid Direct Analysis	LA-325-104 Rev. E-0 and E-1
Hg	Sludge - TCLP Extract and Direct Analysis	LA-325-106 Rev. A-0 for FCLI
	Radionuclide Analyses	
Total Alpha	Liquid - Acid Dilution and Direct Analysis	LA-508-101 Rev. G-0
	Sludge and Tech Smears - Acid digest	
Total Beta	Liquid - Acid Dilution and Direct Analysis	LA-508-101 Rev G-0
	Sludge and Tech Smeats - Acid digest	
Alpha Energy Analysis	Liquid Acid Dilution	LA-508-101 Rev. G-()
GEA	Liquid - Acid Dilution and Direct Analysis Sludge and Tech Smears - Acid digest	LA-548-121 Rev. F-0
90 _{Sr}	Liquid - Acid Dilution and Direct Analysis Sludge and Tech Smears - Acid digest	1.A-220-101 Rev. E-3
241 _{Am} , 243/244 _{Cm}	Liquid - Acid Dilution and Direct Analysis Sludge and Tech Smears - Acid digest	LA-953-104 Rev. B-0
238/239/240p _{tt}	Liquid - Acid Dilution and Direct Analysis Sludge and Tech Sinears - Acid digest	LA-953-104 Rev. B-0
237 _{Np}	Equid Acid Dilution and Direct Analysis	LA-933-141 Rev. H-2
	Sludge and Tech Smears - Acid digest	
	Organic Analyses	
Hexone	Direct Analysis	EPA SW-846 methods 8260B. 5030B and 8000B
PCB	Entraction	LA-523-136 Rev. A-1

Acid dilution procedure = £A-505-158 Rev. E-0 FCLP extraction procedure - £A-504-134 Rev. B-0 Acid digest procedure for TCLP extract - £A-505-164 Rev. B-0 Acid digest procedure for solids - £A-505-163 Rev. B-0 Water digest procedure - £A-504-101 Rev. F-0 PCB Liquid Extraction - £A-523-115 Rev. B-0 PCB Solid Extraction - £A-523-138 Rev. A-2

Abbreviations:

ICP	= inductively coupled plasma spectrometry	243/244 _{Cm}	= curium-243/244
IC.	= ion chromatography	238/239/240 _{Pu}	= plutonium-238,
Нg	= mercury		plutonium-239/240
GEA	= gamma energy analysis	237 _{Np}	= neptunium-237
$^{90}\mathrm{Sr}$	= strontium-90	PCB	polychlorinated biphenyls
241Am	= americium-241	TCLP	toxicity characteristics
			leachate procedure

References

- McGuire, J. J., 1998, Letter of Instruction for the Sample Analysis of the Reduction Oxidation Facility (202-S) Plutonium Loadout Hood, (Letter number 054016 to J. L. Jacobsen, dated July 24), Bechtel Hanford, Inc., Richland WA 99352.
- McGuire, J. J., 1998a. Letter of Instruction for Fiscal Year 1998 REDOX (202-S) Plutonium Loadout Hood Sample Analysis. (Letter number CCN: 060307 to J. L. Jacobsen, dated September 10), Bechtel Hanford, Inc., Richland WA 99352.
- DOE/RL, 1998. Sampling and Analysis Plan for the REDOX Plutonium Loadout Hood, DOE/RL-97-75. Rev. 0. United States Department of Energy, Richland, WA 99352.

WMH-9860237

Attachment 2

Data Summary Report

Consisting of 11 Pages including cover page

`

Data Summary Report PU LOADOUT

CORE NUMBER: n/a SEGMENT #: BOPC22

SEGMENT PORTION: Acid Leachate

OKITON: ALIG	rea	cnate										
Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000315		Mercury by CVAA (PE) with FIAS		98.20		<0.010	n/a	n/a	n/a			
S98M000315	T	Strontium-89/90 High Level	uCi/mL	101.9	<1.32e-07	9.65e-05	n/a	n/a	n/a	n/a	2.14e-07	2.11E+00
S98M000315		Pu-239/240 by TRU-SPEC Resin	uCi/mL	117.9		2.65e-01	n/a	n/a	n/a	n/a	1.10e-02	1.58E+00
S98M000315		Pu-238 by Ion Exchange	uCi/mL	n/a	<3.29e-04	<1.08e-02	n/a	n/a	n/a	n/a	1.10e-02	1.00E+02
S98M000315		Np237 by TTA Extraction	uCi/mL	63.64	<2.62e-05	1.66e-05	n/a	n/a	n/a	n/a	2.80e-05	1.02E+02
S98M000315	D	Cadmium-ICP-Acid Dil.	ug/mL	100.8	<5.00e-03	<5.00e-03	n/a	n/a	n/a	n/a	5.00e-03	n/a
S98M000315	D	Chromium-ICP-Acid Dil.	ug/mL	98.40	<1.00e-02	9.610	n/a	n/a	n/a	n/a	1.00e-02	n/a
S98M000315	D	Iron-ICP-Acid Dil.	ug/mL	97.60	<5.00e-02	42.80	n/a	n/a	n/a	n/a	5.00e-02	
S98M000315	D	Nickel-ICP-Acid Dil.	ug/mL	98.40	<2.00e-02	12.50	n/a	n/a	n/a	n/a	2.00e-02	
S98M000315	D	Lead-ICP-Acid Dil.	ug/ <u>mL</u>	99.80	<1.00e-01	<1.00e-01	n/a	n/a	n/a	n/a	1.00e-01	
S98M000315		Cobalt-60 by GEA	uCi/mL	111.2	<7.91e-07	<7.06e-07	n/a	n/a	n/a	n/a	7.06e-07	
S98M000315		Antimony-125 by GEA	uCi/mL	n/a	<1.86e-06	<1.90e-06	n/a	n/a	n/a	n/a	1.90e-06	
S98M000315		Cesium-134 by GEA	uCi/mL	n/a	<6.02e-07	<5.92e-07	n/a	n/a	n/a	n/a	5.92e-07	n/a
S98M000315		Cesium-137 by GEA	uCi/mL	105.2	<1.63e-06	<1.61e-06	n/a[n/a	n/a	n/a	1.61e-06	n/a
S98M000315		Europium-152 by GEA	uCi/mL	n/a	<1.27e-06	<1.79e-06	n/a	n/a	n/a	n/a	1.79e-06	n/a
S98M000315		Europium-154 by GEA	uÇi/mL	n/a	<2.06e-06	<1.83e-06	n/a	n/a	n/a	n/a	1.83e-06	
S98M000315	\perp	Europium-155 by GEA	uCi/mL	n/a	<1.63e-06	<2.80e-06	n/a	n/a	n/a	n/a	2.80e-06	n/a
S98M000315		Radium-226 by GEA	uCi/mL	n/a	<1.24e-05	<1.26e-05	n/a	n/a	n/a	n/a	1.26e-05	n/a
S98M000315		Actinium-228 by GEA	uÇi/mL	n/a	<3.21e-06	<3.45e-06	n/a	n/a	n/a	n/a	3.45e-06	n/a
S98M000315		Americium-241 by GEA	uCi/mL	n/a	<7.62e-06	1.05e-02	n/a	n/a	n/a	n/a	n/a	
S98M000315		Am-241 by Extraction	uCi/mL	99.12	<6.11e-04	1.03e-02	n/a	n/a	n/a	n/a	1.00e-03	
S98M000315		Cm-243/244 by Extraction	uCi/mL	n/a	<6.11e-04	<1.32e-03	n/a	n/a	n/a	n/a	1.00e-03	
S98M000315	L	Alpha in Liquid Samples	uCi/mL	90.00	<1.87e-05	2.15e-01	2.15e-01	2.15e-01	0.00	n/a	4.51e-05	7.16E-01
S98M000315		Beta in Liquid Samples	uCi/mL	104.5	<1.15e-04	7.44e-03	7.37e-03	7.41e-03	0.95	n/a	1.25e-04	3.16E+00

•

Data Summary Report PU LOADOUT

CORE NUMBÈR: n/a SEGMENT #: BOPC23

SEGMENT PORTION: Centrifuged Solid

PORTION: Centr	1 fuç	ed Solid										
01-#									9/		B.A. 1 5- 5-	
Sample# R S98M000308		Analyte Aroclor-1016	Unit	Standard %	Blank	Result		Average		Spk Rec %	<u>Jet Limit</u> 330.0	Count Err%
\$98M000308		Aroctor-1016 Aroctor-1221	ug/Kg	n/a	<330.0	<3.30e+02	<3.08e2	n/a	n/a		330.0	
S98M000308		Aroctor-1221 Aroctor-1232	ug/Kg	n/a	<330.0 <330.0		<3.08e2	n/a	n/a		330.0	
S98M000308		Aroctor-1232 Aroctor-1242	ug/Kg	n/a	<330.0 <330.0		<3.08e2 <3.08e2	n/a	n/a		330.0	
S98M000308		Aroctor-1242 Aroctor-1248	ug/Kg	n/a	<330.0	<3.30e+02	<3.08e2	n/a	n/a		330.0	
S98M000308		Aroctor-1246	ug/Kg	n/a 97.50	<330.0	2.21e+02	579.0	n/a 400.0	n/a 89.5		330.0	
S98M000308		Aroctor-1260	ug/Kg	y/.50	<330.0		<3.08e2	400.0	n/a		330.0	
\$98M000308			ug/Kg % Recovery	64.25	60.00	66.90	2.64e+03	1.35e+03	70.8		1,000	
S98M000308			% Recovery	93.75	64.25	74.87	3.92e+03	2.00e+03	105		1.000	
S98M000309		Mercury by CVAA (PE) with FIAS		99.60		1.19e+02	120.0	119.5	0.84		10.60	
S98M000310	lu l		ug/g	108.3	<1.20e-02	1.71e+02	189.0	179.8	10.0		97.05	
		Chloride-IC-Dionex 4000/4500	ug/g	107.4	1.20e-02	3.61e+03	3.68e+03	3.65e+03	1.92		137.5	
		Nitrite-IC - Dionex 4000/4500	ug/g	101.3	5.19e-01	<8.73e+02	<8.61e2	n/a	n/a		873.3	
		Nitrate by IC-Dionex 4000/4500		105.2	2.09e-01	3.53e+05	3.49e+05	3.51e+05	1.14			
S98M000310	i i		ug/g	102.2	<1.20e-01	<9.70e+02	<9.57e2	n/a	n/a		970.5	
	W	Sulfate by IC-Dionex 4000/4500	ug/g	103.9	<1.38e-01	7.83e+04	8.60e+04	8.21e+04	9.37		1.12e+03	
		Oxalate-IC-Dionex 4000/4500	ug/g	106.4	<1.05e-01	1.37e+03	973.0	1.17e+03	33.9		849.1	
S98M000311			uCi/g	104.8	8.24e-05	3.47e-04	4.06e-04	3.76e-04	15.7		1.14e-04	2.94E+01
S98M000311			uCi/g	108.9	<5.94e-01	77.10	81.40	79.25	5.43	n/a	3.400	1.62E+00
S98M000311		Pu-238 by Ion Exchange	uCi/g	n/a	<5.94e-01	< 3.400	<3.79E+0	n/a	n/a		3.400	5.54E+00
S98M000311	A	Np237 by TTA Extraction	uCi/g	73.16	<4.14e-03	2.20e-02	7.33e-03	1.47e-02	100	n/a	9.00e-03	2.74E+01
S98M000311		Cadmium - ICP-Acid Digest	ug/g	91.60	<5.00e-03	1.47e+02	146.0	146.5	0.68	n/a	2.020	n/a
S98M000311	Α	Chromium -ICP-Acid Digest	ug/g	92.00	<1.00e-02	1.63e+04	1.60e+04	1.62e+04	1.86	n/a	4.020	n/a
S98M000311	Α	Iron -ICP-Acid Digest	ug/g	92.20	<5.00e-02	2.29e+04	2.22e+04	2.26e+04	3.10	n/a	20.20	n/a
S98M000311		Nickel -ICP-Acid Digest	ug/g	90.20	<2.00e-02	2.52e+02	250.0	251.0	0.80		8.040	
		Lead -ICP-Acid Digest	ug/g	88.60	<1.00e-01	41.50	41.10	41.30	0.97	n/a	40.20	
		Cobalt-60 by GEA	uCi/g	106.1	<2.26e-04	<2.61e-04	<2.31e-4	n/a	n/a		2.61e-04	
		Antimony-125 by GEA	uCi/g	n/a	<6.86e-04	<6.88e-04	<7.11e-4	n/a	n/a	n/a	1.00e-03	
S98M000311		Cesium-134 by GEA	uCi/g	n/a	<2.10e-04	<2.24e-04	<2.21e-4	n/a	n/a		2.24e-04	
S98M000311		Cesium-137 by GEA	uCi/g	102.6	<2.76e-04	2.82e-03	2.39e-03	2.60e-03	16.5		n/a	
		Europium-152 by GEA	uCi/g	n/a	<5.30e-04	<5.97e-04	<6.10e-4	n/a	n/a		1.00e-03	
		Europium-154 by GEA	uCi/g	n/a	<7.41e-04		<7.92e-4	n/a	n/a	·	1.00e-03	
		Europium-155 by GEA	uCi/g	n/a	<3.90e-04		<6.03e-4	n/a	n/a		1.00e-03	
		Radium-226 by GEA	uCi/g	n/a	<5.27e-03	<5.43e-03	<5.35e-3	n/a	n/a		5.00e-03	
		Actinium-228 by GEA	uCi/g	n/a	<1.39e-03	<1.44e-03	<1.38e-3	n/a	n/a		1.00e-03	
S98M000311			uCi/g	n/a	<3.18e-04	8.934	9.080	9.007	1.67		n/a	
			uCi/g	83.04	<1.010	10.20	10.60	10.40	3.85		1.070	
S98M000311			uCi/g	n/a	<1.010		<1.17E+0	n/a	n/a		1.070	
		Alpha of Digested Solid	uCi/g	95.56	<2.92e-03	69.10	70.80	69.95	2.43		6.00e-03	
			uCi/g	105.5	<1.74e-02	7.490	7.770	7.630	3.67		1.80e-02	
S98M000312		Mercury by CVAA (PE) with FIAS	ug/mL	7.37	1.17e-04	5.310	5.690	5.500	6.91	* 	2.30e-04	
S98M000313		Silver -ICP-TCLP Digest-Liquid		94.00	5.39e-02	<1.67e-01	<1.67e-1	n/a	n/a		1.67e-01	<u> </u>
S98M000313			ug/mL	89.58	<1.00e-01	< 1.670	<1.67e0	n/a	n/a	+	1.670	
S98M000313	C	Barium -ICP-TCLP Digest-Liquid	ug/mL	70.26	<5.00e-02	<8.33e-01	<8.33e-1	n/a	n/a	n/a	8.33e-01	n/a

Tetrachloro-m-xylene

% Recovery

Surr

63.00

55.50

16.75

56.70

36.73

14.2

1.000

n/a

n/a

Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec_%	Det Limit	Count Err%
S98M000313	C	Cadmium - ICP-TCLP Digest-Liq	ug/mL	93.70	<5.00e-03	4.320	4.660	4.490	7.57	n/a	8.30e-02	n/a
S98M000313	C	Chromium -ICP-TCLP Digest-Liq	ug/mL	37.66	<1.00e-02	4.22e+02	456.0	439.0	7.74	n/a	1.67e-01	n/a
S98M000313	C	Lead -ICP-TCLP Digest-Liquid	ug/mL	78.35	<1.00e-01	< 1.670	<1.67e0	n/a	n/a	n/a	1.670	n/a
S98M000313	C	Selenium -ICP-TCLP Digest-Liq	ug/mL	93.30	<1.00e-01	< 1.670	<1.67e0	n/a	n/a	n/a	1.670	n/a

Liquid: Liquid R A# Analyte Sample# Unit Standard % Blank Result Duplicate Average RPD % Spk Rec % Det Limit Count Err% S98M000296 D Strontium-89/90 High Level 2.95e-04 2.74e-05 1.52E+01 uCi/mL 104.8 <1.08e-05 2.92e-04 2.98e-04 2.03 n/a S98M000296 12.90 0.78 7.67e-01 1.94E+00 D Pu-239/240 by TRU-SPEC Resin uCi/mL 111.6 <2.94e-01 12.80 12.85 n/a S98M000296 7.68E+00 D Pu-238 by Ion Exchange uCi/mL n/a <2.94e-01 <7.67e-01 <7.80E-1 n/a n/a n/a 7.67e-01 S98M000296 D Np237 by TTA Extraction 72.73 1.00e-03 <1.84e-04 <1.46E-4 n/a 2.80e-04 3.16E+02 uCi/mL n/a n/a S98M000296 D Cadmium-ICP-Acid Dit. 100.8 <5.00e-03 2.44e+02 251.0 247.5 2.83 2.550 ug/mL n/a n/a S98M000296 D | Chromium-ICP-Acid Dil. ug/mL 98.40 <1.00e-02 2.33e+04 2.38e+04 2.36e+04 2,12 n/a 5.100 n/a S98M000296 ug/mL 508.0 25.50 D Iron-ICP-Acid Dil. 97.60 <5.00e-02 5.01e+02 515.0 2.76 n/a n/a 392.0 S98M000296 D Nickel-ICP-Acid Dil 98.40 <2.00e-02 3.86e+02 398.0 3.06 n/a 10.20 n/a ug/mL S98M000296 D Lead-ICP-Acid Dil. 99.80 <1.00e-01 < 51.00 <5.10e1 n/a 51,00 ug/mL n/a n/a n/a S98M000296 D Cobalt-60 by GEA 107.2 <8.14e-06 <9.40e-06 9.40e-06 uCi/mL <8.10e-6 n/a n/a n/a n/a S98M000296 D Antimony-125 by GEA uCi/mL n/a <2.25e-05 <4.18e-05 <4.21e-5 4.18e-05 n/a n/a n/a n/a S98M000296 D Cesium-134 by GEA uCi/mL n/a <6.81e-06 <9.75e-06 <1.00e-5 9.75e-06 n/a n/a n/a n/a S98M000296 D Cesium-137 by GEA 103.4 <1.76e-05 1.38e-03 1.36e-03 2.20 3.13 uCi/mL 1.35e-03 n/a n/a S98M000296 D | Europium-152 by GEA n/a <1.54e-05 <1.42e-04 uCi/mL <1.44e-4 n/a n/a 1.42e-04 n/a n/a S98M000296 D Europium-154 by GEA uCi/mL n/a <2.41e-05 <2.49e-05 <2.23e-5 2.49e-05 n/a n/a n/a n/a S98M000296 D Europium-155 by GEA uCi/mL n/a <1.96e-05 <4.54e-04 <4.63e-4 n/a n/a n/a 4.54e-04 n/a <3.82e-4 S98M000296 D Radium-226 by GEA n/a <1.27e-04 <3.73e-04 3.73e-04 n/a uCi/mL n/a n/a n/a S98M000296 D Actinium-228 by GEA uCi/mL <4.32e-05 <3.90e-05 <4.13e-5 3.90e-05 n/a n/a n/a n/a n/a S98M000296 D Americium-241 by GEA 0.0500 uCi/mL n/a <4.50e-05 12.40 12.60 12.50 1.60 n/a n/a S98M000296 D Am-241 by Extraction <4.70e-01 11.40 11.30 11.35 0.88 9.28e-01 2.19E+00 uCi/mL 78.86 n/a S98M000296 D Cm-243/244 by Extraction uCi/mL <4.70e-01 <9.28e-01 <9.24E-1 n/a n/a n/a 9.28e-01 1.00E+02 n/a S98M000296 D Alpha in Liquid Samples 24.30 25.20 24.75 3.00e-03 6.01E-01 uCi/mL 97.78 <2.11e-03 3.64 n/a S98M000296 D Beta in Liquid Samples 2.800 2.785 1.08 1.30e-02 1.43E+00 uCi/mL 109.6 <9.35e-03 2.770 n/a S98M000298 Pu 239/240 % by AEA 8,00e-15 n/a 49.00 n/a n/a n/a n/a n/a n/a S98M000298 Pu 238/ Am 241 % by AEA 51.00 8.00e-15 n/a n/a n/a n/a n/a n/a n/a S98M000298 Alpha in Liquid Samples 5.00e-03 9.03E-01 uCi/mL 88.89 <3.02e-03 23.90 n/a n/a n/a n/a S98M000298 4,700 2.20e-02 1.64E+00 uCi/mL Beta in Liquid Samples <1.18e-02 n/a n/a n/a n/a S98M000302 Mercury by CVAA (PE) with FIAS ug/mL 98.20 <5.00e-03 1.46e+02 150.4 148.0 3.24 20.00 n/a n/a S98M000302 Fluoride-IC-Dionex 4000/4500 100.2 <1.20e-02 2.03e+02 218.0 210.3 7.13 122.4 ug/mL n/a n/a S98M000302 Chloride-IC-Dionex 4000/4500 ug/mL 101.3 <1.70e-02 4.68e+03 4.99e+03 4.83e+03 6.41 n/a 173.4 n/a S98M000302 <1.10e+03 <1,10e3 Nitrite-IC - Dionex 4000/4500 98.71 <1.08e-01 1.10e+03 ug/mL n/a n/a n/a n/a S98M000302 Nitrate by IC-Dionex 4000/4500 ug/mL 104.6 <1.39e-01 4.44e+05 1.42e+03 4.46e+05 4.45e+05 0.45 n/a n/a S98M000302 Phosphate-IC-Dionex 4000/4500 98.89 <1.20e-01 <1.22e+03 1.22e+03 <1,22e3 n/a ug/mL n/a n/a n/a S98M000302 4.71 Sulfate by IC-Dionex 4000/4500 ug/mL 100.1 < 1.38e-01 5.60e+04 5.87e+04 5.74e+04 n/a 1.41e+03 n/a S98M000302 Oxalate-IC-Dionex 4000/450 101.7 <1.05e-01 1.98e+03 3.94e+03 2.96e+03 66.2 1.07e+03 n/a ug/mL n/a S98M000303 Aroclor-1016 ug/L <6.00e-01 < 60.00 <6.00e1 n/a 60.00 n/a n/a n/a n/a S98M000303 Aroclor-1221 ug/L n/a <6.00e-01 < 60.00 <6.00e1 n/a n/a n/a 60.00 n/a S98M000303 Aroclor-1232 60.00 ug/L n/a <6.00e-01 < 60.00 <6.00e1 n/a n/a n/a n/a S98M000303 Aroclor-1242 <6.00e-01 60.00 <6.00e1 60.00 n/a ug/L n/a < n/a n/a n/a S98M000303 Aroclor-1248 n/a <6.00e-01 60.00 <6.00e1 60.00 n/a ug/L n/a n/a n/a S98M000303 Aroclor-1254 98.25 <6.00e-01 60.00 ug/L 57.10 58.60 57.85 2.59 n/a n/a S98M000303 Aroctor-1260 ug/L n/a <6.00e-01 60.00 <6.00e1 n/a n/a n/a 60.00 n/a S98M000303

	1.00e-02	n/a	n/a	n/a	<u> </u>	1.000	n/a <	n/a	PH	Du Dilect	C4200001040
f	n/a 5.00e-01	n/a	n/a	n/a	n/a	1.540	n/a	n/a	9/™	BUCK DENSITY OF Sample	3000001803
Со	Det Limit	Average RPD % Spk Rec % Det Limit Count Err%	RPD %		Result Duplicate	Result	Blank	Standard %	Unit	R A# Analyte	Sample# R
										Whole Sample	Whole Sample: Whole Sample
Ĭ	1.000	n/a	132.9 52.5		210.0	55.83	89.25	79.25	Surr % Recovery	Decachlorobiphenyl	398MUUU3U3
Cou	Det Limit	Average RPD % Spk Rec % Det Limit Count Err%	RPD %		Result Duplicate	Result	Blank	Standard %	Unit		Sample# R

Data Summary Report PU LOADOUT

CORE NUMBÈR: n/a SEGMENT #: BOPC24

OKTIONI TEEN	~	-,										
Sample# R	A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000353	1	Strontium-89/90 High Level	uCi/g	105.8	<1.34e-05	2.43e-05	n/a	n/a		n/a	1.25e-05	4.78E+01
S98M000353		Pu-239/240 by TRU-SPEC Resin	uCi/g	113.4	<3.28e-02	2,660	n/a	n/a	n/a	n/a	1.37e-01	1.72E+00
S98M000353	L	Pu-238 by Ion Exchange	uCi/g	n/a	<3.28e-02	<1.37e-01	n/a	n/a	n/a	n/a	1.37e-01	5.50E+00
S98M000353	$I_{}$	Np237 by TTA Extraction	uCi/g	92.64	1.00e-03	1.30e-03	n/a	n/a	n/a	n/a	2.00e-03	9.04E+ <u>01</u>
S98M000353		Cobalt-60 by GEA	uCi/g	96.17	<1.96e-04	<2.00e-04	n/a	n/a	n/a	n/a	2.00e-04	n/a
S98M000353		Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<6.11e-04	n/a	n/a	n/a	n/a	1.00e-03	
S98M000353	<u> </u>	Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<2.04e-04	n/a	n/a	n/a	n/a	2.04e-04	n/a
S98M000353	Ι	Cesium-137 by GEA	uCi/g	102.1	<2.74e-04	<2.67e-04	n/a	n/a	n/a	n/a	2.67e-04	n/a
S98M000353		Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<5.53e-04	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000353		Europium-154 by GEA	uCi/g	n/a	<6.06e-04	<6.28e-04	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000353		Europium-155 by GEA	uCi/g	n/a	<4.36e-04	<4.38e-04	n/a	n/a	n/a	n/a	4.38e-04	n/a
S98M000353		Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<4.74e-03	n/a	n/a	n/a	n/a	5.00e-03	n/a
S98M000353		Actinium-228 by GEA	uCi/g	n/a	<1.25e-03	<1.19e-03	n/a	n/a	n/a	n/a	1.00e-03	
S98M000353		Americium-241 by GEA	uCi/g	n/a	<3.59e-04	4.0 <u>1e</u> -01	n/a	n/a	n/a	n/a	n/a	
S98M000353		Am-241 by Extraction	uCi/g	78.41	<3.99e-02	3.68e-01	n/a	n/a	n/a	n/a	7.10e-02	3.23E+00
S98M000353		Cm-243/244 by Extraction	uCi/g	n/a	<3.99e-02	<7.06e-02	n/a	n/a	n/a	n/a	7.10e-02	1.00E+02
S98M000353		Alpha of Digested Solid	uCi/g	91.67	<2.65e-02	2.380	n/a	n/a	n/a	n/a	4.00e-02	6.82E+00
S98M000353		Beta of Solid Sample	uCi/g	112.1	<1.77e-01	2.39e-01	n/a	n/a	n/a	n/a	1.87e-01	4.89E+01

`

Data Summary Report PU LOADOUT

CORE NUMBÉR: n/a SEGMENT #: BOPC25

Sample#	R A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD_%	Spk Rec %	Det Limit	Count Err%
S98M000354	Strontium-89/90 His	nh Level uCî/g	105.8	<1.34e-05	1.98e-05	n/a	n/a	n/a	n/a	1. <u>85e-05</u>	7.75E+01
S98M000354	Pu-239/240 by TRU-9	PEC Resin uCi/g	113.4	<3.28e-02	3.240	n/a	n/a	n/a	n/a	1.76e-01	1.72E+00
S98M000354	Pu-238 by Ion Excha		n/a	<3.28e-02	<1.76e-01	n/a	n/a	n/a	n/a	1.76e-01	5.03E+00
S98M000354	Np237 by TTA Extra	tion uCi/g	92.64	1.00e-03	<1.83e-03	n/a	n/a	n/a	n/a	2.00e-03	1.33E+02
S98M000354	Cobalt-60 by GEA	uCī/g	96.17	<1.96e-04	<1.86e-04	n/a	n/a	n/a	n/a	1. <u>86e-04</u>	n/a
S98M000354	Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<6.31e-04	n/a	n/a	n/a	n/a	1. <u>00e-03</u>	n/a
S98M000354	Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<2.10e-04	n/a	n/a	n/a	n/a	2.10e-04	n/a
S98M000354	Cesium-137 by GEA	uCi/g	102.1	<2.74e-04	<2,70e-04	n/a	n/a	n/a	n/a	2.70e-04	n/a
S98M000354	Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<5.35e-04	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000354	Europium-154 by GEA	uCi/g	n/a	<6.06e-04	<6.14e-04	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000354	Europium-155 by GE/	uCi/g	n/a	<4.36e-04	<4.47e-04	n/a	n/a	n/a	n/a	4.47e-04	n/a
S98M000354	Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<4.77e-03	n/a	n/a	n/a	n/a	5.00e-03	
S 98M 000354	Actinium-228 by GE/	uCi/g	n/a	<1.25e-03	<1.20e-03	n/a	n/a	n/a	n/a	1.00e-03	
S98M000354	Americium-241 by GE	A uCi/g	n/a	<3.59e-04	4.13e-01	n/a	n/a	n/a	n/a	n/a	0.510
S98M000354	Am-241 by Extraction	n uCi/g	78.41	<3.99e-02	3.87e-01	n/a	n/a	n/a	n/a	6.80e-02	3.12E+00
S98M000354	Cm-243/244 by Extra	ction uCi/g	n/a	<3.99e-02	<6.84e-02	n/a	n/a	n/a	n/a	6.80e-02	1.00E+02
S98M000354	Alpha of Digested S	olid uCi/g	91.67	<2.65e-02	2.980	n/a	n/a	n/a	n/a	4.00e-02	6.12E+00
S98M000354	Beta of Solid Sampl	e uCi/g	112.1	<1.77e-01	2.69e-01	n/a	n/a	n/a	n/a	1.87e-01	5.11E+01

12 jan 1974 1fiziral A-0002-1

×

Data Summary Report PU LOADOUT

CORE NUMBÉR: n/a SEGMENT #: BOPC26

OKTION. TECH SIR											
Sample# R A	# Analyte	Unit	Standard %	Blank:	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000355	Strontium-89/90 High Level	uCi/g	105.8	<1.34e-05	7.17e-06	n/a	n/a	n/a	n/a	1.40e-05	1.49E+02
S98M000355	Pu-239/240 by TRU-SPEC Resin	uCi/g	113.4	<3.28e-02	3.98e-01	n/a	n/a	n/a	n/a	2.40e-02	1.88E+00
\$98M000355	Pu-238 by Ion Exchange	uCi/g	n/a	<3.28e-02	<2.40e-02	n/a	n/a	n/a	n/a	2.40e-02	7,00E+00
S98M000355	Np237 by TTA Extraction	uCi/g	92.64	1.00e-03	<1.68e-03	n/a	n/a	n/a	n/a	2.00e-03	1.58E+02
S98M000355	Cobalt-60 by GEA	uCi/g	96.17	<1.96e-04	<6.44e-05	n/a	n/a	n/a	n/a	6.44e-05	n/a
S98M000355	Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<1.71e-04	n/a	n/a	n/a	n/n	1.71e-04	n/a
S98M000355	Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<5.42e-05	n/a	n/a	n/a	n/a	5.42e-05	n/a
S98M000355	Cesium-137 by GEA	uCi/g	102.1	<2.74e-04	<7.91e-05	n/a	n/a	n/a	n/a	7.91e-05	n/a
S98M000355	Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<1.32e-04	n/a	n/a	n/a	n/a	1.32e-04	n/a
S98M000355	Europium-154 by GEA	uCi/g	n/a	<6.06e-04	<2.04e-04	π/a	n/a	n/a	n/a	2.04e-04	n/a
S98M000355	Europium-155 by GEA	uCi/g	n/a	<4.36e-04	<1.00e-04	n/a	n/a	n/a	n/a	1.00e-04	n/a
S98M000355	Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<1.31e-03	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000355	Actinium-228 by GEA	uCi/g	n/a	<1.25e-03	<3.61e-04	n/a	n/a	n/a	n/a	3.61e-04	n/a
S98M000355	Americium-241 by GEA	uCi/g	n/a	<3.59e-04	5.35e-02	n/a	n/a	n/a	n/a	n/a	0.800
S98M000355	Am-241 by Extraction	uCi/g	78.41	<3.99e-02	6.35e-02	n/a	n/a	n/a	n/a	1.10e-02	3.42E+00
S98M000355	Cm-243/244 by Extraction	uCi/g	n/a	<3.99e-02	<1.13e-02	n/a	n/a	n/a	n/a		1.00£+02
S98M000355	Alpha of Digested Solid	uCi/g	91.67	<2.65e-02	3.66e-01	n/a	n/a	n/a	n/a		5.76E+00
S98M000355	Beta of Solid Sample	uCi/g	112.1	<1.77e-01	3.45e-02	n/a	n/a	n/a	n/a	2.00e-02	4.08E+01

Data Summary Report PU LOADOUT

CORE NUMBÈR: n/a SEGMENT #: BOPC27

PURITON: TECH	Silie	dr										
Sample# R	A#	Analyte	Unit	 Standard %'	Blank	Result	Duplicate)	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000356	Γ	Strontium-89/90 High Level	uCi/g	105.8	<1.34e-05	<1. 11 e-05	n/a	n/a	n/a	n/a	1.45e-05	2.85E+02
\$98M000356		Pu-239/240 by TRU-SPEC Resin	uCi/g	113.4	<3.28e-02	6.52e-02	n/a	n/a	n/a	n/a	5.00e-03	1.97E+00
S98M000356	L	Pu-238 by Ion Exchange	uCi/g	n/a	<3.28e-02	<4.64e-03	n/a	n/a	_ n/a	n/a	5.00e-03	6.53E+00
S98M000356		Np237 by TTA Extraction	uCi/g	92.64	1 <u>.00e</u> -03	9.37e-04	n/a	n/a	n/a	n/a		1.23E+02
S98M000356	1	Cobalt-60 by GEA	uCi/g	96.17	<1.96e-04	<5.87e-05	n/a	n/a	n/a	n/a	5.87e-05	n/a
S98M000356		Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<1.61e-04	n/a	n/a	n/a	n/a	1.61e-04	n/a
S98M000356		Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<5.47e-05	n/a	n/a	n/a	n/a	5.47e-05	n/a
S98M000356		Cesium-137 by GEA	uCi/g	102.1	<2.74e-04		n/a	<u>n/</u> a	n/a	n/a		n/a
S98M000356		Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<1.33e-04	n/a	n/a	n/a	n/a		n/a
S98M000356	L	Europium-154 by GEA	uCi/g	n/a	<6.06e-04	<1.87e-04	n/a	n/a	n/a	n/a		n/a
S98M000356		Europium-155 by GEA	uCi/g	n/a	<4.36e-04	<9.62e-05	n/a	n/a	n/a	h/a	9.62e-05	n/a
S98M000356	1	Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<1,28e-03	n/a	n/a	n/a	n/a		n/a
S98M000356		Actinium-228 by GEA	uCi/g	n/a	<1.25e-03	<3.58e-04	n/a	n/a	n/a	n/a	3.58e-04	n/a
S98M000356	_	Americium-241 by GEA	uCi/g	n/a	<3.59e-04	9.10e-03	n/a	n/a	n/a	n/a	n/a	
S98M000356		Am-241 by Extraction	uCi/g	78.41	<3.99e-02	1.02e-02	n/a	n/a	n/a	n/a	2.00e-03	3.34E+00
S98M000356	<u> </u>	Cm-243/244 by Extraction	uCi/g	n/a	<3.99e-02	<1.90e-03	n/a	n/a	n/a	n/a	2.00e-03	1.00E+02
S98M000356		Alpha of Digested Solid	u <u>Ci/g</u>	91.67	<2.65e-02	6.24e-02	n <u>/a</u>	n/a	n/a	n/a	3.96e-04	4.17E+00
S98M000356		Beta of Solid Sample	uCi/g	112.1	<1.77e-01	5.44e-03	n/a	n/a	n/a	n/a	2.00e-03	2.39E+01

`

Data Summary Report PU LOADOUT

CORE NUMBER: n/a SEGMENT #: 80PC28

PURITUN: 1ech	Juic.	1	,	·								
Sample# R	A#	Analyte	Unit	 Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000358		Strontium-89/90 High Level	uCi/g	105.8	<1.34e-05	<6.30e-06	n/a	n/a	n/a	n/a	1.32e-05	2.12E+02
S98M000358		Pu-239/240 by TRU-SPEC Resin	uCi/g	113.4	<3.28e-02	7.19e-01	n/a	n/a	n/a	n/a	4.10e-02	1.76E+00
S98M000358		Pu-238 by Ion Exchange	uCi/g	n/a	<3.28e-02	<4.05e-02	n/a	n/a	n/a	n/a	4.10e-02	6.59E+00
S98M000358		Np237 by TTA Extraction	uCi/g	92.64	1.00e-03	<1.19e-03	n/a	n/a	n/a	n/a	2.00e-03	4.40E+02
S98M000358		Cobalt-60 by GEA	uCi/g	96.17	<1.96e-04	<6.60e-05	n/a	n/a	n/a	n/a	6.60e-05	n/a
S98M000358		Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<1.65e-04	n/a	n/a	n/a	n/a	1.65e-04	n/a
\$98M000358		Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<5.42e-05	n/a	n/a	n/a	n/a	5.42e-05	n/a
S98M000358		Cesium-137 by GEA	uCi/g	102.1	<2.74e-04	<7.56e-05	n/a	n/a	n/a	n/a	7.56e-05	n/a
S98M000358		Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<1.35e-04	n/a	n/a	n/a	n/a	1.35e-04	n/a
S98M000358		Europium-154_by GEA	uCi/g	n/a	<6.06e-04	<2.05e-04	n/a	n/a	n/a	n/a		n/a
S98M000358		Europium-155 by GEA	uCi/g	n/a	<4.36e-04	<9.81e-05	n/a	n/a	n/a	n/a	9.81e-05	n/a
S98M000358		Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<1.29e-03	n/a	n/a	n/a	n/a	1.00e-03	n/a
\$98M000358		Actinium-228 by GEA	uCi/g	n/a	<1.25e-03	<3.55e-04	n/a	n/a	n/a	n/a	3.55e-04	n/a
S98M000358		Americium-241 by GEA	uCi/g	n/a	<3.59e-04	9.10e-02	n/a	n/a	n/a	n/a	n/a	0.520
S98M000358		Am-241 by Extraction	uCi/g	78.41	<3.99e-02	1.09e-01	n/a	n/a	n/a	n/a	1.30e-02	2.63E+00
S98M000358		Cm-243/244 by Extraction	uCi/g	n/a	<3.99e-02	<1.34e-02	n/a	n/a	n/a	n/a	1.30e-02	1.00E+02
S98M000358		Alpha of Digested Solid	uCi/g	91.67	<2.65e-02	6.78e-01	n/a	n/a	n/a	n/a	4.00e-03	4.24E+00
S98M000358		Beta of Solid Sample	uCi/g	112.1	<1.77e-01	4.82e-02	n/a	n/a	n/a	n/a	2.00e-02	2.94E+01

Data Summary Report PU LOADOUT

CORE NUMBER: n/a SEGMENT #: BOPK78

TON TON		T										
Sample#	R A#	Analyte	Unit	Standard %	ßlank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S98M000357		Strontium-89/90 High Level	uCi/g	105.8	<1.34e-05	2.17e-05	n/a	n/a	n/a			
S98M000357		Pu-239/240 by TRU-SPEC Resin	uCi/g	116.1	<1.630	35.80	h/a	n/a	n/a	n/a	3,100	7.12E-01
S98M000357		Pu-238 by Ion Exchange	uCi/g	n/a	<1.630	5.650	n/a	n/a	n/a	n/a	3.100	1.40E+00
S98M000357		Np237 by TTA Extraction	uCi/g	92.64	1.00e-03	<1.87e-03	n/a	n/a	n/a	n/a	2.00e-03	1.28E+02
S98M000357		Cobalt-60 by GEA	uCi/g	96.17	<1.96e-04	<6.47e-05	n/a	n/a	n/a	n/a	6.47e-05	n/a
S98M000357		Antimony-125 by GEA	uCi/g	n/a	<6.24e-04	<1.69e-04	n/a	n/a	n/a	n/a	1.69e-04	n/a
S98M000357		Cesium-134 by GEA	uCi/g	n/a	<1.99e-04	<5.52e-05	n/a	n/a	n/a	n/a	5.52e-05	n/a
S98M000357		Cesium-137 by GEA	uCi/g	102.1	<2.74e-04	<7.54e-05	n/a	n/a	n/a	n/a	7.54e-05	n/a
S98M000357		Europium-152 by GEA	uCi/g	n/a	<5.29e-04	<1.54e-04	n/a	n/a	n/a	n/a	1.54e-04	n/a
S98M000357		Europium-154 by GEA	uCi/g	n/a	<6.06e-04	<1.98e-04	n/a	n/a	n/a	n/a	1.98e-04	n/a
\$98M000357	<u> </u>	Europium-155 by GEA	uCi/g	n/a	<4.36e-04	<1.98e-04	n/a	n/a	n/a	n/a	1.98e-04	n/a
S98M000357	-↓	Radium-226 by GEA	uCi/g	n/a	<4.78e-03	<1.33e-03	n/a	n/a	n/a	n/a	1.00e-03	n/a
S98M000357		Actinium-228 by GEA	∖uCi/g	n/a	<1.25e-03	<3.57e-04	n/a	n/a	n/a	n/a	3.57e-04	n/a
S98M000357		Americium-241 by GEA	uC1/g	n/a	<3.59e-04	5.250	n/a	n/a	n/a	n/a	n/a	
S98M000357		Am-241 by Extraction	uCi/g	95.59	<1.600	24.10	n/a	n/a	n/a	n/a	3.480	8.87E-01
S98M000357	<u> </u>	Cm-243/244 by Extraction	uCi/g	n/a	<1.600	< 3.480	n/a	n/a	n/a	n/a	3,480	1.00E+02
S98M000357	1	Alpha of Digested Solid	uCi/g	96.55	3.60e-02	53.40	n/a	n/a	n/a	n/a	2.70e-02	1.45E+00
S98M000357		Beta of Solid Sample	uCi/g	100.7	<2.79e-01	4.290	n/a	n/a	n/a	n/a	1.15e-01	4.25E+00

Λ

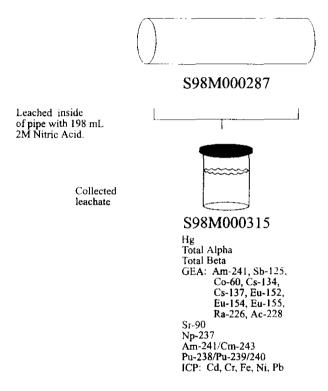
Additional ICP Results PU LOADOUT

CORE NUMBÉR: n/a SEGMENT #: BOPC23

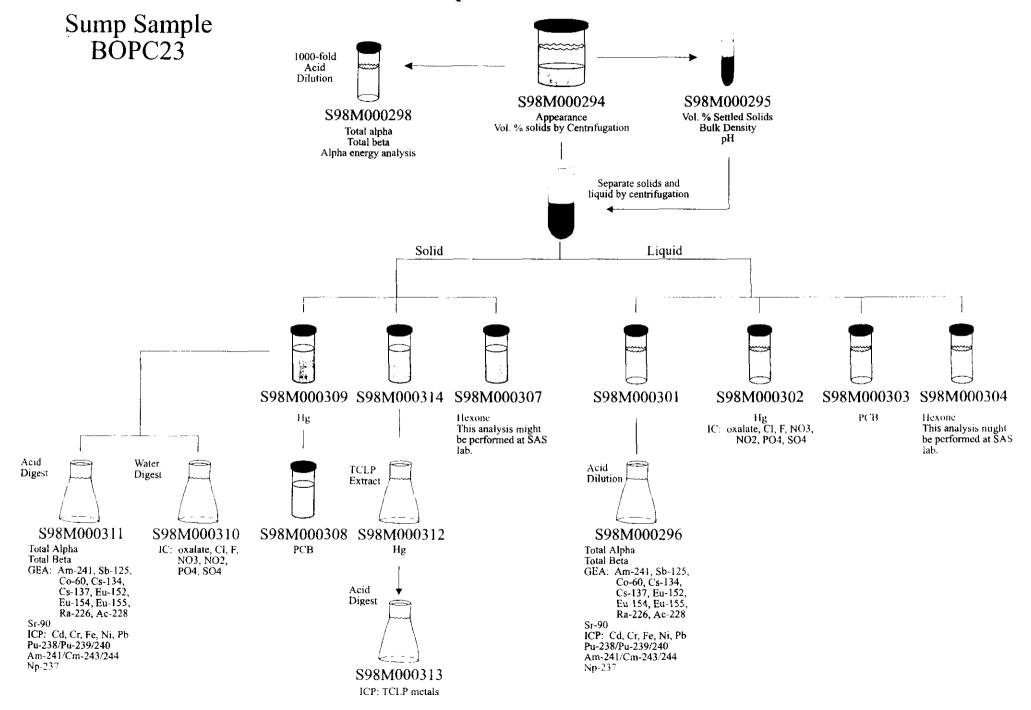
SEGMENT PORTION: Liquid

TORTION. LIGGIG											
Some lett											
	A# Analyte	<u> Unit</u>	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
	D Silver-ICP-Acid Dil.	ug/mL	100.0	<1.00e-02	< 5.100	<5.10e0	n/a	n/a	n/a	5.100	n/a
	D Arsenic-ICP-Acid Dil.	ug/mL	103.2	<1.00e-01	< 51.00	<5.10e1	n/a	n/a	n/a	51.00	n/a
	D Barium-ICP-Acid Dil.	ug/mL	99.00	<5.00e-02	< 25.50	<2.55e1	n/a	n/a	n/a	25.50	n/a
S98M000296	D Selenium-ICP-Acid Dit.	ug/mL	95.80	<1.00e-01	< 51.00	<5.10e1	n/a	n/a	n/a	51.00	

JAN 1999 RECEPTED Data Log In WMH-9860237

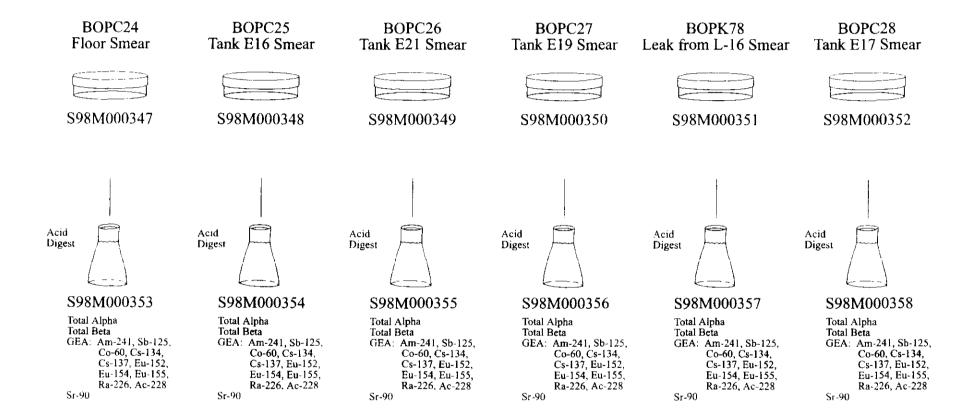

Attachment 3

Sample Breakdown Diagrams


Consisting of 4 Pages including cover page

202S Pu Load-Out Hood Samples

Process Piping BOPC22



202S Pu Load-Out Hood Samples

202S Pu Load-Out Hood Samples

Technical Smears

WMH-9860237

Attachment 4

Chain-Of-Custody Forms

Consisting of 8 Pages including cover page

01:40 FAX

Bechtel Hanford	C	HAIN OF CUS	TODY/SA	REQUES	T	B98-059-01 Page !			ą Ī			
Callector			enny Contact chael Galgoul	Telephone 373-568			Project Coord WEISS, RL	inator	Data T	ernaround	<u> </u>	
Project Designation 202-S Building - Plutonium I	oadout Hood - Other S	olid Samp	ling Location West				SAF No. B98-059			00 1	Days	
Ice Chest No.			Legbook No. L=L-142	9			Met hod of Shi Hand delive	pment r				
Shipped To 222-S Lab Operations			e Property No.				BIII of Lading	AIT BUI No.			·	
Waste Designation Clien	determined no waste	codes associat	ed with this project.				COA					
POSSIBLE SAMPLE HAZA	· <u>-</u>	^	Preservation	None								
Process Ve	انا اعدد	7	Type of Container	P								
Special Handling and/or Stor	age		No. of Container(s) Volume	1 25g								
	SAMPLE ANAL	YSIS		See item (1) in Special Instructions								
Sample No.	Matrix *	Sample Date	Sample Time							,		
BOPC22	P.Pe	8-25-	98 1038	X	2.	7 X	10 - D	Pm	A/	phs		· · · · · · · · · · · · · · · · · · ·
							Droce	+55 /	Pe			
							·	Stri	-At-	- , 4	139	
CHAIN OF POSSESSION		Sign/Pri	nt Names	11	SPECIAL INST	receipt of sea	uplee . If insuffici	ent material, u	se FSR as a gu	ideline.	Matrix S	<u> </u>
Relinguished By Was Dave Bry	Date/Time/ 40 2 # 8-25-98 Date/Time	Received By Received By	when 8-3	DeterTime 130 S-98 Date/Time		niysis. Com in i als mium; Ameri	cium-241/Curium	CCP M244; Neptuni	5 <176` (€1) k, S um-237; Gama) na	SE = Sedime SO = Solid SL = Sludge W = Water O = Oil	
Relinquished By	Date/Time	Received By	····	Dete/Time	Europium-155, R. Radium-228); Su 6010 A (Su)-8	adium-226); rootium-90; G	Gamma Spec - Ar	id-on (Antimo	ny-125, Cesius	m-134,	A = Air DS = Drum S DL = Drum S	
Relinquished By	Date/Time	Received By	Γ	Date/Time	TCP Metals Webals by 1 VOA -8260A -1 IC Anions -90	- 6010A (CP (TCL) Complete	ML-0n) L 1) 1311/60 4- Methul	eal; Me 10, Mortu	none: PCE	+11(CV); s=17+110; s=-5050;	T = Tissuc WI = Wipe W = Liquid V = Vegeta X = Other	ioa
LABORATORY Received By SECTION	Male			Title		Nitrite,	phosphate:	sultate:	IC Anip	ne D	ate/Time	125
FINAL SAMPLE Disposal M	ethod				Dis	sposed By				1	ate/Time	

Bechtel Hanfor	d, Inc.	CH	IAIN OF CUSTO	DY/SAM	IPLE AN	ALYSIS	REQUE	ST			Page	of
lector DAV			Company Contact				 _	Telephone			l	Priority
\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	AN!			5 min	ou /			Telephone	568%		<u> </u>	Nominal
ject Designation	Plu London	Hood	Sampling Location	bond.	out h	400		SAF No.	298-0	60		
Chest No.	013 8-31- 077	28	Field Logbook No.						Shipment			
ipped To	. <		Offsite Property Ng.	<u>-</u>				Bill of Ladi	na/Air Rift F			
ssible Sample Hez	ards/Remerks		Preservation	Cool				N		<u> </u>		
RDD			Type of Container	Pol.							 	
			No. of Conteiner(s)	ruly.								
ecial Handling and	I/or Storage		Volume	500mL			·			<u> </u>	 	
				30000			 					
	SAMPLE ANALYS	IS										
Sample No.	Matrix *	Date Sampled	Time Sampled								1	
BOPC23	other	8-31-98	1100	X	Appros	water	35 m6	of S	ficke	IN BO	#le	
					4	000	DP		(, , , ,	\$ 8-21	20	
						100	}		La De	\$ \$ 37	74	
- -		- 			5.	MR	Br. g	POA	,	} ,		
				 		0,608		1		wooner	}	<u> </u>
		- 		<u> </u> t	<u>U =</u>	.056	9	P	H 1.	5		
		<u> </u>					<u> </u>					
HAIN OF POSSES	SION	Sign/Print			SPECIAL I	NSTRUCTION	ONS LA	B 70 3	sepand	e Liq-	120193	Metrix*
elinguished By	Date/Time 6	Received By	Date/TI	me /3:10	Louda	of Head	Sample	may si	8 Reci	ay (20)	15016Js .s) Pu	S = Soil SE = Sediment SO = Soild
elinquished by	Date/Time	Received By			Lig +	Sold p	hase +	o be An	glyza	ANDIE	المحاسم الم	W = Water O = Oil
alinquished By	Date/Time	Received By	Date/Ti	me	Sample	1-798	ALDI	. (20 <u>)</u> 15i5 im	1 202-	S ANA	before in	DS = Drum Solid DL = Drum Liqui T = Tissue
elinquished By	Date/Time	Received By	Date/Ti	ime	202-		lu Load	e) at	/1 /	Sem 1	8-31-98	SO = Solid SL = Studge W = Water O = Oil A = Air DS = Drum Solid DL = Drum Liqui T = Tissue W = Wipe L = Liquid V = Vegetation X = Other
LABORATORY SECTION	Received By		Title		12-5	- '/	<u> </u>			ate/Vime		LX_s Other
FINAL SAMPLE DISPOSITION	Disposal Method			Dis	posed By				1	Date/Time		

Bechtel Hanford	Inc.	CH	HAIN OF CUST	FODY/SA	MPLE ANAL	YSIS :	REQUES	Т	B98-059-01 Page 1 0			of <u>!</u>		
BRYANT			any Contact hael Galgoul	Telephone ? 373-5681	lo.		Project Coord w EiSS, ki.	inator	Data T	urnaround	Dove			
Project Designation 202-S.Building - Plutonium	Loadout Hood - Other Se		ing Location West				SAF No. B98-059		60 Days					
Ice Chest No.		Field L	ogbook No. - L - 1429		<u> </u>		Method of Shi Hand delive		·····	·				
Shipped To 222-S Lab Operations		Ulisite	Property INO.				·····	A FEBRUARY						
Waste Designation Clien	t determined no waste	codes associated	d with this project.				COA 7	· _						
POSSIBLE SAMPLE HAZA	RDS/REMARKS		Preservation	None										
			Type of Container	P										
Special Handling and/or Sto	rage		No. of Container(s) Volume	1 25g										
	SAMPLE ANAL	YSIS		See item (1) in Special Instructions										
Sample No.	Matrix *	Sample Date	Sample Time		er in general in in a				- · · · · · ·					
BOPC 24	other Solid	8-24-9	8 /335	X	87	0,0	90 DI	m	F	lour				
	·							3.95	e-7	Ci.				
										<u></u>				
CHAPLOE BOSSESSAN		61	- No		SPECIAL INSTR				FCP	deline.	Matrix	•		
Relinquished By Relinquished By	Date/Time O 25	Sign/Prin	ht I which	ate/Time/855 J.J. 8:25: ate/Time	Spectroscopy (Amer Europium-155, Radi	rder of prioritysis. Quar 1 TOLS um; Ameri ricium-241 ium-226;	rity. 222-S is to on tify Resin Bead of Supply Tourney, Curium, Cesium-137, CeGamma Spec - A	determine Resirementation to Concentration to Concentration to Concentration to Concentration to Concentration (Antimore Conce	Bead concent <1% m-237; Gamm um-152, Europ ny-125, Cesium	ration a pium-154, a-134,	S = Soil SE = Sedin SO = Solid SL = Sludg W = Water O = Oil A = Air DS = Drum	ge f		
Relinquished By	Date/Time	Received By	D	ate/Time	Radium-228); Stron 6010A (SW &H) TCP Metal 5 - 1	6010A (All-on) L	eal. Me.	eury-74	ficv)	DL = Drum T = Tissue WI = Wipe	: Liquids e		
Relinquished By	Date/Time	Received By	D	ate/Time	Netals by ICA VOA-8260A-CO IC Anions-9056	P(TCLf mplete o (hlori)-1311 <i>/60</i> 4- Mcthyl de. Fluoria	10; Mercu -2: Pentar c. Nitrogen	my (TCLP) ione: PCB in Nitra	1311/14710; 13-5080;	L = Liquid V = Veget X = Other	tation		
LABORATORY Received By SECTION	, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	Title	Notrogen in N Add on Oxal	trite.	phosphate;	sulate:	IC Anior	6- D	Date/Time			
FINAL SAMPLE Disposal N DISPOSITION	fethod				Dispo	sed By	Tech :	Men	25	E	Date/Time			

Bechtel Hanford I	nc.	Cł	HAIN OF CUST	rody/sa	MPLE A	ANALY	YSIS	REQUES	T	B98	8-059-01	Page <u>l</u>	of <u>2</u>
Collector			any Contact hael Galgoul	Telephone 373-568				Project Coord WEISS. RL	inator	Data T	urnaround	- L	
Project Designation 202-S Building - Plutonium Lo	adout Hood - Other S	Solid Sampli	ing Location West					SAF No. B98-059			60 T	Jays	
Ice Chest No.		Field L	Logbook No. EL-14	27				Method of Shi Hand delive					
222-S Lab Operations		Offsite	Property No.					Bill of Lading					
222-3 Lab Operations			MA					1 1/	<u>A</u>	·			
Waste Designation Client of	determined no waste	e codes associated	d with this project.					COA					
POSSIBLE SAMPLE HAZAR	DS/REMARKS		Preservation	None								i	
			Type of Container	P									
			No. of Container(s)	1-1-					 	†			
Special Handling and/or Stora	ge		Volume	25g			1					ĺ	
	SAMPLE ANAL	.YSIS		See item (1) in Special Instructions									
Sample No.	Matrix *	Sample Date	Sample Time					rangia (maran ilian					
B0PC25	Other Solid	8-10-9	8 1030	X		5.	2	10	966	1 4	Lph	3	
BOPC26 - DCB 9-70-74	Other Solid							2.3	14 e-	6 Ci		<u> </u>	
BOPG27 DUB 8-1098	Other Solid												
BOPC28- OC 3 8-10-94	Other Solid												
BOPC29 OLB 4-10-9)	Other Solid												
CHAIN OF POSSESSION		Sign/Prin	at Names	<u> </u>		L INSTRI		NS SR as a guideline.	Analyses listed		1	Matrix S = Soil	
Relinquished By Relinquished By Relinquished By	Date/Time ONS Date/Time Date/Time	Received By	// // // // //	Ste/Time 85 S-8:25: Pate/Time	Spectrose Europium Radium-	copy (Amer m-155, Radii	icium-24 um-226} iium-90;	risium 241/Gurium 11, Cesium-137, Co ; Gamma Spec - A Gross Alpha; (obalt-60, Europ dd-on {Antimo	rium-152, Euro ny-125, Cesiw	na pium-154, m-134, de5	SE = Sedin SO = Solid SL = Studg W = Water O = Oil A = Air	ge ge
Relinquished By	Date/Time	Received By		Date/Time	7 1			m och R				DS = Drum DL = Drum T = Tissue W: = Wipe	ı Liquids le
Relinquished By	Date/Time	Received By	D	Pate/Time	7 ;	TANK	Z	mode E16			1	£ = Liqui V = Veget X = Other	id tation
LABORATORY Received By SECTION				Title						<u> </u>	L	ate/Time	
FINAL SAMPLE Disposal Met DISPOSITION	hod					Dispos	sed By			<u></u>	D	ate/Time	*

Bechtel Hanford	tel Hanford Inc. CHAIN OF CUSTODY/SAMPLE ANALYSI								`	B98-	-059-01	Page 2 o	<u>it 2</u>	
ollector			iny Contact hael Galgoul	Telephone N 373-5681	No.		P	roject Coordin /EISS, RL	ator	Data Tu	rnaround			
oject Designation 202-S Building - Plutonium L	oadout Hood - Other So	Sampli	ng Location West	 				AF No. 98-059			60 L)ays		
e Chest No.		Field L	ogbook No. FL-1429				A	lethod of Ship Hand deliver						
nipped To	••••••		Property No.				B	ill of Lading/A						
aste Designation Client	determined no waste	codes associate	' '					COA						
POSSIBLE SAMPLE HAZA	RDS/REMARKS		Preservation	None										
			Type of Container	P										
			No. of Container(s)					i.					 	
Special Handling and/or Stor	age		Volume	25g				ļ					İ	
	SAMPLE ANAL	YSIS		See item (1) in Special Instructions										
Sample No.	Matrix *	Sample Date	Sample Time	18 (4. 15.4. 1887 - 15.4.	-	8 8 18 Te	6	13e	80				pt to	
30PC38 26	Other Solid	8-24-98	1245	X		/3	5,00	od Of	n	TANK	k E			
BOPCZZ	other Solid	8-24-98	1305	X		/3 6	0		h	Tans		19		
						66	000		3.0 e	-8 G	,	ļ	-	
CHAIN OF POSSESSION		Sign/Pri	int Names			AL INSTRI		lS R as a guideline.	Analyses listed	_	· ·	Matrix * S = Soil		
Relinguished By Ara BR	Date/Time () 85 (41 825-98 Date/Time		the intudet	Date/Time 085	Spectro	otopie Plutoniu oscopy {Amer um-155, Radii	ricium-241	ium-152, Euro	12 pium-154,	SE = Sedin SO = Solid SL = Sludg W = Wate O = Oil	āc ļ			
Religious feed By		/ /	<u> </u>	<u></u> ,	Actor	ides by	TC	PMS		, ,		A = Air DS = Drun	n Solids	
Relinquished By Date/Time Received By Date/Time								ium-155, Radium-226]; Gamma Spec - Add-on (Antimony-125, Cesium-134, m-228]; Strontium-90; Gross Alpha, Groek Betw., Drum Solids Dt Drum Solids Dt Drum Liquidi T Tissue W1 - Wipe L. Liquid						
Relinquished By	Date/Time	Received By	[Date/Time		ECN					:	L = Liqui \	ctation	
LABORATORY Received B SECTION	y		,	Title								Date/Time		
FINAL SAMPLE Disposal I	Method		•		•	Dispo	sed By					Date/Time	7.	

Bechtel Hanford I	nc.	CH	IAIN OF CUST	TODY/SA	MPLE	ANALY	YSIS	REQUEST		B98	8-059-01	Page 2	of <u>2</u>		
BRYANT			Company Contact Telephone No.					Project Coordin	ator	Data Tu	arnaround	1			
/SKTA~ [Project Designation		ı	Michael Galgoul 373-5681 Sampling Location						WEISS, RL				60 Days		
202-S Building - Plutonium Lo	oadout Hood - Other S		West	SAF No. B98-059				·							
ce Chest No.			ogbook No.	Method of Shipment Hand deliver											
GRC-077 Shipped To			EL -1429 Property No.					Bill of Lading/A	ir Bill No						
200 S Let Operations		1	NIA					N/H							
Vaste Designation Client	determined no waste	e codes associate						COA							
POSSIBLE SAMPLE HAZAF	RDS/REMARKS		Preservation	None				1							
RAD			Type of Container	P											
• • • •			No. of Container(s)	1											
Special Handling and/or Stora	age	!	Volume	25g											
	SAMPLE ANAI	LYSIS		See item (1) in Special Instructions											
Sample No.	Matrix *	Sample Date	Sample Time	Transfer of the second	- 12 CHP		14-15 74 5	*** 15 5(-*) =	三条	47.11		*** ***	A A		
B0PC36 78 4-3	Other Solid	8-31-8	5 1010	X	le	00,0	િક	OPM	Alp	ha					
CHAIN OF POSSESSION	······	Sign/Pri	nt Names	<u> </u>		IAL INSTR ufficient mater		ONS SR as a guideline	Analyses liste	-	-	Matrix *			
Relinquished By Refinguished By	Date/Time/3/6 8-31-98 Date/Time	Received By	det Sia Karelet (Date/Time 13/ B-Cate/Time	Spect Europ	(1) Isotopio Plutonium: Americium 241/Curium 244, Neptunium 227; Gamm Spectroscopy (Americium-241, Cesium-137, Cobali-60, Europium-152, Euro Europium-155, Radium-226); Gamma Spec - Add-on (Antimony-125, Cesiu Radium-228). Strontium-90; Gross Alpha, Gross Betw., ACHNICLES Dy ICP MS						um-154, St. = Sludge			
Relinquished By	Date/Time	Received By	D	Date/Time		TANK-ETT Tech Smear						DS = Drum Solids DL = Drum Liquids T = Tissue W1 = Wipe			
Relinquished By	Date/Time	Received By	Ε	Date/Time	7	āh S	in e	ar.				L = Liqu V = Veg X = Othe	uid getation		
LABORATORY Received By SECTION				Ti		<u></u>		-				Date/Time			
FINAL SAMPLE Disposal Me	ethod	,	•		<u></u>	Dispo	osed By					Date/Time			

Bechtel Hanford I	nc.		CHA	AIN OF CUST	ΓΟDY/SA	MPLI	EANAL	YSIS	REQUES	ı,	B98	3-059-02	Page <u>i</u>	of 1
Collector D. BKTANT	I inai		Company	Contact I Galgoul	Telephone	No.	<u> </u>		Project Coordi WEISS, RL	nator	Data T	urnaround	<u> </u>	
Project Designation 202-S Building - Plutonium Lo				Location					SAF No. B98-059			ό ῦ Ι	days	
Ice Chest No.	•		Field Log	book No.	9	-	· · · · · · · · · · · · · · · · · · ·	-	Method of Ship Hand deliver					
Shipped To		1	O#: B-	naeti Na					Bili of Lading/	Air Bill No.				
222-S Lab Operations			1	N/A					2	A				
Waste Designation Client	determined no w	aste codes ass	ociated w	vith this project.				:	COA					
POSSIBLE SAMPLE HAZAR	ds/remarks			Preservation	None									
				Type of Container	Þ									
				No. of Container(s)	1									
Special Handling and/or Stora	ege			Volume	25g									
	SAMPLE A	NALYSIS			See item (1) in Special Instructions.									
Sample No.	Matrix *	Sample	Date	Sample Time		- 								
B0PK78	Other Solid	8-1/-	-98	0920	X		1 %	20,0	00 Dam	RIOTA	0~	the	Smeal	e_
BOPK79 DLBy-ligh	Other Solid						3,	000	2,000 0	m A	1pha		e-6 (i
·				<u> </u>				_						
CHAIN OF POSSESSION	4	آ سمے سے در	gn/Print N	Names		If in:		ial, use FS	R as a guideline	RJ:	N 816199	ا ح	Matrix S = Soil SE = Sedin	
Relinquished By Dogg BK/0		Received		Wer "	ate/Time 095	5 (1)- Gam	isotopie Plutoni ma Spectroscop	um; Amer y {Ameri	cium-241/Curium cium-241, Cesium , Radium-226}, G	-244; Neptunii -137, Cobalt-6	m-222 , Actini 0, Europium-1	des ICPMS, 52,	SO = Solid SL = Sludg	ge
Relinquished by	8-25-98 Date/Time	Received	By By	L make glos	late/Time	Cesi	um-134, Radiur	n-228}; S	trontium -90	Gross A	dd-on (Antim pha; Gros	s Beta	W = Wate O = Oil A = Air	
Refineuished By	Date/Time	Received	Ву	D	ate/Time	_	Tech	5 m	ear m L-1			1	DS = Drum DL = Drum T = Tissu WI = Wipe	s Liquids e
Relinquished By	Date/Time	Received	Ву	D	ate/Time		Leal	tu	m L-1	6			L Liqui V Veget X - Other	id tation
LABORATORY Received By SECTION					Title	<u> </u>		<u>.</u>					ate/Time	
FINAL SAMPLE Disposal Me	thod						Dispo	sed By	······································		- · · · . · · · · · · · · · · · · · · ·	D	ate/Time	

WMH-9860237

Attachment 5

Sample Disposition Records

Consisting of 7 Pages including cover page

FROM THE DESK OF:

Doris Ayres

BHI Sample and Data Management

373-5683/L0-20

TO:

Ruth Esch

DATE: September 15, 1998

SUBJECT: SAMPLE DISPOSITION RECORDS B98-075, B98-079, B98-080 AND B98-081

Sample disposition records (SDRs) are the mechanism by which BHI Sample and Data Management (SDM) documents analysis instructions and changes to the laboratories during the sample analysis process. SDR B98-075 gives direction on which analyses to run in FY 1998 and FY 1999 for samples B0PC22 and B0PC23. SDR B98-079 gives the laboratory direction for sample breakdown and analysis of sample B0PC22. SDR B98-080 gives direction on the handling of the liquid and solid phases of sample B0PC23. SDR B98-081 gives the laboratory direction on proceeding with the TCLP analyses for sample B0PC23.

Please incorporate these SDRs into the final data package when delivered to SDM. If you have any questions please feel free to call me on 373-5683.

Por alyes

Control #: B98-081 Sample Disposition Record Revision#: Date Initiated: 9/10/98 Section 1 - BACKGROUND SAF#: B98-059 OU: N/A Project ID: 202-S Building Task ID: 1 Sampling Event: 202-S Building - Plutonium Loadout Hood Laboratory: 222-S Lab Operations Project Coordinator: WEISS, RL Task Manager: GALGOUL, MJ Section 2 - SAMPLE INFORMATION Number of Samples: 1 ID Numbers: B0PC23 MATRIX: Other Solid Collection Date: 08/31/98 Section 3 - ISSUE Class: Lab Direction NCR Number: N/A Type: Insufficient Volume Description: Insufficient volume to meet TCLP protocol N/A NCR Validation (Print/Sign) Date **Section 4 - DISPOSITION** Type: Use As Is Description: The laboratory will use the minimum volume required by internal laboratory procedures to run TCLP for metals on the solid phase of sample number B0PC23. WEISS, RL Project Coordinator (Print/Sign) Date QA (Print/Sign) Date Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: N/A Inspection Results: N/A

N/A

Inspector (Print/Sign)

Sample Disposition Record

Control #:

B98-080

Revision#:

Date Initiated:

9/10/98

Section 1 - BACKGROUND

SAF#: B98-059

OU: N/A

Project ID: 202-S Building

Task ID: 1

Sampling Event: 202-S Building - Plutonium Loadout Hood

Laboratory: 222-S Lab Operations Project Coordinator: WEISS, RL Task Manager: GALGOUL, MJ

Section 2 - SAMPLE INFORMATION

Number of Samples: 1 ID Numbers: B0PC23 MATRIX: Other Solid Collection Date: 08/31/98

Section 3 - ISSUE

Class: Lab Direction NCR Number: N/A

Type: Multiple Phase Sample

Description: Separation of liquid and solid phases in sample B0PC23

N/A

NCR Validation (Print/Sign)

Date

Section 4 - DISPOSITION

Type: Use As Is

Description: The laboratory is to separate and analyze liquid and solid phases. The liquid phase is to be analysed as an "other liquid" per the analytical requirements for liquids specified in the 202-S Analytical Instruction. The solid phase is to be analyzed as an "other solid" per the analytical requirements for sump solids specified in

the 202-S Analytical Instruction. pH for liquid and solid phases is not required.

WEISS, RL Rech L M (1)	2/1798
Project Coordinator (Print/Sign)	Date
GALGOUL, MJ Mul Galgar	9-10-98
Task Manager (Print/Sign)	Date
N/A	

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: N/A Inspection Results: N/A

N/A

Inspector (Print/Sign)

QA (Print/Sign)

Date

Sample Disposition Record

Control #:

B98-079

Revision#:

Date Initiated:

9/9/98

Section 1 - BACKGROUND

SAF#: B98-059

OU: N/A

Project ID: 202-S Building

Task ID: 1

Sampling Event: 202-S Building - Plutonium Loadout Hood

Laboratory: 222-S Lab Operations Project Coordinator: WEISS, RL Task Manager: GALGOUL, MJ

Section 2 - SAMPLE INFORMATION

Number of Samples: 1 ID Numbers: B0PC22 MATRIX: Other Solid Collection Date: 08/25/98

Section 3 - ISSUE

Class: Lab Direction NCR Number: N/A

Type: Revision of Direction - Cancellation of Analyses

Description: Revised direction for sample breakdown and analysis of sample BOPC22

N/A

NCR Validation (Print/Sign)

Date

Section 4 - DISPOSITION

Type: Use As Is

Description: Due to the lack of residues in the 202-S Pipe Sample (B0PC22), the laboratory is directed to leach the interior

of the sample with an acidified solution as discussed in the 202-S Analytical Instruction. Since acid leaching is

required, the laboratory is directed to delete the following analyses: VOA, PCB, Anions and pH.

WEISS, RL

Project Coordinator/(P

Date

GALGOUL, MJ

QA (Print/Sign)

Date

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: N/A Inspection Results: N/A

N/A

Inspector (Print/Sign)

Control #: B98-075 Sample Disposition Record Revision#: Date Initiated: 9/9/98 Section 1 - BACKGROUND SAF#: B98-059 OU: N/A Project ID: 202-S Building Task ID: 1 Sampling Event: 202-S Building - Plutonium Loadout Hood Laboratory: 222-S Lab Operations Project Coordinator: WEISS, RL Task Manager: GALGOUL, MJ Section 2 - SAMPLE INFORMATION Number of Samples: 8 ID Numbers: B0PC24, B0PC27, B0PC28, B0PC23, B0PC22, B0PC26, B0PK78, B0PC25 MATRIX: Other Solid Collection Date: 08/10/98 - 08/31/98 Section 3 - ISSUE Class: Lab Direction NCR Number: N/A Type: Clarification of Direction Description: Scope of analytical work for fiscal years 1998 and 1999 N/A NCR Validation (Print/Sign) Date Section 4 - DISPOSITION Type: Use As Is Description: Complete all sample preparation activities for samples B0PC23 and B0PC22, and analyze short holding time constituents (VOA, PCB, Hg-TCLP, Hg-total, pH, anions) in fiscal year 1998 for sample B0PC23. In addition, sample B0PC23 is to be analysed for gross alpha and gross beta in fiscal year 1998. Analyses and sample prep for all other samples are to be completed in fiscal year 1999. WEISS, RL Project Coordinator (Print/Sign) GALGOUL, MJ Task Manager (Print/Sign) QA (Print/Sign) Date Section 5 - INSPECTION (Issue Class: Nonconformance Only) Inspection Number: N/A Inspection Results: N/A

Date

N/A

Inspector (Print/Sign)

000 04 02 0282594 BHI 98D MANAGEMENT 589 372 9487 P.2/2 B99-007 Control #: Sample Disposition Record Revision#: Date Initiated: 12/4/98 Section 1 - BACKGROUND SAF#: B98-059 OU: N/A Project ID: 202-S Building Task ID: 1 Sampling Event: 202-S Building - Plutonium Loadout Hood Laboratory: 222-S Lab Operations Project Coordinator: WEISS, RL Task Manager: GALGOUL, MJ Section 2 - SAMPLE INFORMATION Number of Samples: 12 ID Numbers: B0PC24, B0PC27, B0PC28, B0PC29, B0PC30, B0PC31, B0PC23, B0PC22, B0PK79, B0PC26, B0PK78. BOPC25 MATRIX: Other Solid Collection Date: Section 3 - ISSUE Class: Lab Direction NCR Number: Type: Revision of Direction - Cancellation of Analyses Description: Deletion of ICP-MS analysis for actinides N/A NCR Validation (Print/Sign) Date Section 4 - DISPOSITION Type: Use As Is

Description: The 222-S laboratory experienced an equipment outage that impacted the ICP-MS analysis for actinides on the listed samples. The laboratory has agreed to run Alpha Energy Analysis in place of the ICP-MS for no additional cost to the ERCon samples where ICP-MS was the only requested method for determining

Actinide concentration

4,	
WEISS, RL	X-ATT VV

Project Coordinator (Print/Sign)

GALGOUL, MJ

Task Manager (Print/Sign)

Date

N/A

QA (Print/Sign)

Date

Section 5 - INSPECTION (Issue Class: Nonconformance Only)

Inspection Number: N/A Inspection Results:

N/A

Inspector (Print/Sign)

WMH-9860237

Attachment 6

Analytical Report for Project 202-S Pu Loadout Hood Hexone Analysis - FR8-8016

Consisting of 61 Pages including cover page

NHC

Numatec

Hanford Corporation

An SGN/Cogema, Inc. Company

Internal Memo

From:

Special Analytical Support

82300-FAST-98-100

Phone:

373-4771 S3-90

Date:

October 20, 1998

Subject:

ANALYTICAL REPORT FOR PROJECT 202S Pu LOADOUT HOOD

HEXONE ANALYSIS - FR8-8016

To:

R. A. Esch

T6-12

cc:

D. B. Bonfoey

S3-90 <u>GAF</u> fo, DBB S3-90 <u>KSN</u>

R. S. Viswanath

Project File

Attached is the analytical report in support of this project.

If you have any questions regarding analysis, please contact Mr. Douglas Bonfoey at 373-2482 or myself at 373-4771.

L. L. Lockrem, Manager

Special Analytical Support

sir

Attachments

Attachment

ANALYTICAL REPORT

for

SAS PROJECT FR8-8016202S Pu Loadout Hood Hexone Analysis

Consisting of 58 pages

ANALYTICAL REPORT

for

SAS PROJECT FR8-8016202S Pu Loadout Hood Hexone Analysis

prepared for

Waste Management Federal Services of Hanford, Inc. P.O. Box 700 Richland, Washington 99352

October, 1998

Table of Contents

Case Narrative
Introduction
Analysis Results
Analysis
Quality Control
References
Chain of Custody Forms
Quality Control Summary Tables
MS Tunes and BFB Spectral Scans
Initial Calibration Data
Sample Analysis Data
End of Package

Case Narrative

INTRODUCTION

On September 11, 1998, Special Analytical Support (SAS) personnel received 1 sample in duplicate from Sampling and Mobile Laboratory (SML) personnel. Another sample was received in duplicate from SML personnel on September 17, 1998. The samples were prepared at 222S laboratory and transported with chain of custody to the SAS facility for analysis.

ANALYSIS RESULTS

SAS Sample ID	Customer ID	Date Sampled	Analysis Requested	Analytical Result
8016-01	S98M000304 Samp	08/31/98	VOA - Hexone	<0.011 mg/kg
8016-02	S98M000304 Dup	08/31/98	VOA - Hexone	None
8016-03	S98M000307 Samp	08/31/98	VOA - Hexone	None
8016-04	S98M000307 Dup	08/31/98	VOA - Hexone	<0.022 mg/kg

ANALYSIS

Hexone (methyl isobutyl ketone, MIBK, or 4-methyl-2-pentanone) concentrations in liquid and sludge samples were determined using EPA SW-846 methods 8260B, 5030B, and 8000B. In this purge and trap technique, the samples were purged with helium gas and the analyte was trapped and concentrated on a sorbent trap, focused on a narrow bore sorbent trap to improve the chromatographic efficiency, and injected into a gas chromatograph equipped with a mass selective detector.

The method was optimized for hexone analysis by using an option in 5030B that does not require the use of sorbents specifically designed to trap gases and high molecular weight compounds if those compounds are not required for the analysis. This modification reduced the time required for sample analysis and thereby allowed analysts to review analytical results while working in the RCA. It also reduced potential water carry-over problems and allowed the use of lower desorption temperatures which favors recovery of thermally labile compounds.

Since hexone was the only analyte requested, the surrogates were changed to better reflect hexone recovery; 2-hexanone and tetrachloroethylene were used. 2-Hexanone was chosen because it is close to hexone with

respect to chemical structure and physical properties. Tetrachloroethylene was chosen because its boiling point and chromatographic retention time are close to hexone. Tetrachloroethylene is an ideal analyte for purge and trap analysis compared to the ketones which have lower purge efficiencies.

The instrumentation consisted of a Dynatherm Dynamic Thermal Stripper for purging the samples and a Hewlett-Packard 5890 Series II gas chromatograph (GC) with a 5972 mass selective detector (MSD) for analysis. The sorbent traps were packed with Tenax-TA to optimize for hexone analysis, as discussed above. An Rtx-502.2, 105 m length, 0.53 mm internal diameter, 3 um film thickness, capillary column was used The purge rate and purge times were set to EPA method 5030B specifications. The samples were purged at 40 deg. C to improve the purge efficiencies of the ketones. An optional dry purge step was used to remove water from the sorbent tubes after the purge step was completed.

Two samples, a liquid and a sludge, each in duplicate, were received for analysis. One liquid sample (8016-02) and one sludge sample (8016-03) were lost during the analysis. The liquid sample foamed during the purge step. The analysis was stopped at that point to prevent any contamination of the instrument. The foam apparently plugged the purge vent because the purge flow stopped during the subsequent analysis of the sludge sample. Work was stopped at that point. The remaining sludge sample was analyzed after the instrument was repaired.

The samples were received in purge tubes ready for connection to the purge instrument. Reagent water, containing the surrogates and internal standards, was injected through a side port septum prior to analysis. The sludge sample was thoroughly mixed with the reagent water before it was connected to the purge instrument

The sampling date was 8/31/98. The liquid sample (8016-01) was received by SAS on 9/11/98 and analyzed on 9/18/98, thus exceeding the 14 day hold time by 4 days. The sludge sample (8016-04) was received by SAS on 9/17/98 and analysis was completed on 9/23/98, thus exceeding the hold time by 9 days.

QUALITY CONTROL

Logbooks

Sample and standard preparation was documented in logbook HNF-N-91-1. The instrument maintenance, analytical settings, and run log were recorded in WHC-N-943-1.

Mass Selective Detector Tune

The MSD was tuned to EPA method 8260B criteria for 4-bromofluorobenzene (BFB) prior to the initial calibration of the instrument. The instrument tune was checked each day of analysis by performing a spectral scan of the BFB peak and verifying that the mass intensity criteria were met. In addition, BFB was added to each standard, blank, and sample to verify that tune criteria were met. Tune reports are included in this

document. The BFB acceptance criteria is shown on the BFB tune reports. The requirements for EPA method 8260B were met.

Initial Calibration of the Instrument

Calibration standards were prepared in reagent water and analyzed using the same instrument settings used for sample analysis. Certified, neat standards were purchased from Chem Service, Inc. Weighed aliquots were measured and diluted to the required concentrations in the laboratory. A 6-point calibration curve at concentrations of 5, 10, 25, 50, 100, and 200 ug/L was established for the target analyte (hexone) and the surrogates. The average relative response factor method, based on internal standards, was used to calculate the amount of analyte in the samples (EPA method 8000B).

EPA method 8260B required a relative standard deviation (RSD) of ≤15% for the response factors in order to use the average relative response factor method. An RSD of 5% or less was achieved for all the analytes of interest. The Response Factor Report and calibration plots are included in this report.

System Performance Check

Method 8260B required that the mean response factors of system performance check compounds (SPCCs) exceed a minimum value. Since the target list for this analysis was limited to compounds of interest, the SPCCs specified in 8260B were not required. In general, the average response factors should exceed a value of 0.10. With the exception of 2-hexanone, a surrogate, the response factor requirement was achieved. The average response factor for 2-hexanone was 0.077 which may explain the slightly high variability observed for this compound. The response factors for hexone (0.126) and 2-hexanone were based on the response to the 100 m/z ion. The 100 m/z ion is a lower intensity ion in the spectra of the ketones, however, it was used for quantitation because it is specific to the analytes of interest.

Calibration Verification

A calibration verification standard (CVS) was analyzed daily to validate the initial calibration. Method 8260B required the response factors of the target analyte (hexone) and calibration check compounds (CCCs) to be within 20% of the average response factor obtained during initial calibration. The CVS response factors for hexone met this requirement. Due to the abbreviated target list, the CCCs were not required for this analysis. 2-Hexanone (-21.2%) and tetrachloroethylene (-22.4%), both analytical surrogates, exceeded 20% one time each during the analytical run.

Internal Standards

An internal standard (a,a,a-trifluorotoluene) was added to each standard, sample, LCS, and blank at a concentration of 50 ug/L. The response for the internal standard was required by EPA method 8260B to be within 50 - 200% of the response of the daily CVS. Retention times for each internal standard were required to be within +/- 30 seconds from that in the daily CVS. The internal standard acceptance criteria was met for all the samples in this sample set. The results are summarized in the Internal Standards Summary Table

Method Detection Limit (MDL)

MDL studies were not conducted for this analysis. Therefore, extrapolation below the calibration curve was not allowed.

Method Blanks

A method blank was analyzed each day of analysis to ensure the analytical system was free of interference. The concentrations of hexone detected in the method blanks were below the lowest calibration standard.

Matrix Spikes

Matrix spikes were not requested nor was sufficient sample submitted for preparing matrix spikes.

Surrogate Recoveries

Two surrogate compounds were spiked into each sample and blank just prior to analysis. EPA method 8260B required a recovery of 70 - 130%. The 2-hexanone recovery in sample 8016-01 was 138%. The target analyte was not detected above the lower quantitation limit in this sample, therefore, the higher recovery did not affect positive sample results. All the remaining surrogate recoveries were within acceptable limits. The results are presented in the Surrogate Standards Summary Table.

Laboratory Control Sample (LCS)

An LCS is an aliquot of reagent water spiked with the same analytes as the matrix spike. The LCS was prepared using an independent lot of hexone as a check on standard purity. EPA method 8260B required a recovery of 70 - 130%. A hexone recovery of 101% was obtained.

REFERENCES

EPA, December 1996, Test Methods for Evaluating Solid Waste (SW-846), Third Edition; U.S. Environmental Protection Agency, Washington, D.C.

Chain of Custody Forms

,
82300-
i.i.
=
ڀ
0
Ξ,
75.
FAST-
<u> </u>
_
1.
•
T-98-
7
_
=
3
_

lector 25 Lab F No. ject Title 25 Pu Loadout Hood pped To (Lab) 2R c/o Joy Smith or Doug Bonfoe tocol -846/8260 VOA SAMPINO. SAMPINO.	27	Contact/Requester Ruth Esch Sample Origin 2025 Facility P Logbook No.			Telephone No. 373-4314 Purchase Order/Charge Code	MSIN FAX 16-12 DB 8211	372-1878
F No. ject Title 25 Pu Loadout Hood pped To (Lab) 2R c/o Joy Smith or Doug Bonfoe locol -846/B260 VOA Sample No. Lab ID	2 y	Sample Origin 2025 Facility P Logbook No. Method of Shipmen			Purchase Order/Charge Code		315 1010
25 Pu Loadout Hood pped To (tab) 2R c/o Joy Smith or Doug Bonfoe tocol -846/8260 VOA Sample No. Lab ID	2 y	Logbook No. Method of Shipmen			<u> </u>	DEPORTI /	
25 Pu Loadout Hood pped To (tab) 2R c/o Joy Smith or Doug Bonfoe tocol -846/8260 VOA Sample No. Lab ID	2 y	Method of Shipmen	ıt			Temp.	6
2R c/o Joy Smith or Doug Bonfoe locol -846/8260 VOA Sample No.	2 y		it				
10col -846/8260 VOA Sample No. Lab ID					Bill of Lading/Air Bill No.	,	$\mathbb{Q}_{\mathbb{A}}$
Sámple No. Lab ID		Data Turnaround 1 Week			Offsite Property No.		100x
	Date Tir			Sam	ole Analysis		Preservativo
		Purge & Trap	VOA analys	is for Hexone. 2.234 g	Liquid density = 1.53 g/m	 nL	None
DUP 598N000304 L	 						None
DUP \$98N000304 L		Purge & Trap	VUA anatys	is for Hexone. 2. 306 g	liquid density = 1.53 g/	III.	HOTEL .
			· · · · · · · · · · · · · · · · · · ·				1
							+
							-
					· · · · · · · · · · · · · · · · · · ·		
							<u> </u>
					,	•	
	 				····		
SSIBLE SAMPLE HAZARDS/REMARKS (List all known wastes	MSDS Yes	[X] N₀ S	PECIAL INSTRUCTIONS		Hold Time	<u>,L</u>
23.9 uCi/mL alpha activity 4.70 uCi/mL beta activity	49% Pu-239/240	. 51% Pu-238 or Am-241		nalyze for VGA ASAP. ampling data was 8/31/98		14 days from saa	mpting
			-	The "SAMP" and "	oup" labels are		
			r	narked directly a	n sample tubes.		
inquished By Print	Seten	Date/Time Rec		Pript Sign	Date/Time		
in Knight U	Kiah#1	7/148 13:30	MHOSIA.	JG HOGAN	9-11-95 /330 s	Matrix*	Drum Solids
inquished By		4 171	rived By	91	Date/Time S	Seil DS E Sediment OL	tippe solds bippe must :
7 HOSPON JA HE	16 Am 9-11	98/1345	Grea Fil	cs /3' H.S	-09-11-98 [345] ₅	e somment tit O ∈ So#d 1	- Lissu e
inquished By		Date/Time Rece	rived Uy	- J V -	Date/Time Si		Wepe
$\boldsymbol{\mathcal{C}}$					[w	/ = Water L	= Liquid
inquished By		Date/Time Rece	sived By		Date/Time O		- Vegetation
		1			\ A		⇒ Other
Disposal Method Is n. R	aturn la customet ne	lab procedure, used in proce	ts) 11	Disposed By	<u></u>	Date/Time	
SPOSITION Return to customer	otom to contomer, pe	tan kananana, asan ui bince.		naharra al			

All samples containing hazardous materials shall be picked up by requestor and returned to parent container or site of origin.

8230
=
Ţ
. 1
T
_
S
ij
9
90
7
_
0
$\overline{}$

Westinghouse Hanford Company	CHAIN OF CUST	ODY/S#	AMPLE ANALYSIS	REQUEST	C.O.C. No.	of 1
Collector	Contact/Hequestor	· · · · · · · · · · · · · · · · · · ·		i elephone No.	MSIN -FAX	
202S Laboratory	Ruth Esch			373-4314	16-14	372 - 1878
SAF No.	Sample Origin 2025 Facility Po	u Loadout Ho	ord	Purchase Order/Charge Code DB8211		\approx
Project Title	Lagbook No.	o conasac no		Ice Chest No.	Temp.)) ^
202S Pu Loadout - FR8-8016 Shieped To (Lab)						
SAS (622G) c/o Joy Smith or Doug Bonfoey	Method of Shipment Sampling and Mol			Bill of Lading/Air Bill No.		
Protocol SW-846 Method/8256 for Hexone	Data Turnaround			Offsite Property No.		-
Supple A D Lab ID 8 3 Date	Time No./Type Container		Semp	le Analysis		Preservativo
SAMP 2 S98M000307 4 S	prge/trap tube	VOA anat	ysis for hexone. Sample amo	unt = 1.21 g		NONE
DUP \$98M000307 S	prge/trap tube	VOA anal	ysis for hexone. Duplicate	sample amount = 1.16 g	···	NONE
		Doser	ate on contact <0.	Swead/be for	cach	
			<u> </u>			
						<u> </u>
				<u> </u>		
POSSIBLE SAMPLE HAZARDS/REMARKS (List all known was	stee) MSDS Yes	X No	SPECIAL INSTRUCTIONS		Hold Time	<u>.</u>
Sample contains 70 uCi/g alpha activity			Analyze for hexone. Sampling date 8/31/98		14 days from sam 9/14/98	pling date,
7.5 uCi/g beta activity						
Relinquished By Print Sign		ived By	Print Sign	Date/Time	Matrix	
Relinquished By	9/7/98 /3:00 Date/Time Recei	ived BV_	IG HOGAN	Date/fime S	= Soil DS	= Drum Solids
IFT HARAN TI. HALSH &	a / / A.C.	12/2	1 Mar D. J. Paul		£ ≃ Sediment DL	= Drum Liquids
Plelinguished By		E) ONYO	rcy Daug BONE	2KY 11/1/8 13/8	O = Solid T	= Issue
Library drawn and	Dáte/Time Recei	ived By		/ / Date/Time S	L = 5ludge - WI	- Wipe
		· · · · · · · · · · · · · · · · · · ·	<u>/</u>	V	V = Water I.	= Liquid
Relinquished By	Date/Fime Recei	ived By		Date/Time G) = Oil V	= Vegetation
	}_			^_^	= Air X	≂ Other
FINAL SAMPLE Disposal Method le.g., Return to customer per Lab procedure	, per lab procedure, used in proces	ss)	Disposed By		Date/Irme	

All samples containing hazardous materials shall be picked up by requestor and returned to parent container or site of origin.

Quality Control Summary Tables

Internal Standards Summary Table

		a,a	a-Trifluorotolue	пе
Sample Name	Data File	Response (EICP Area)	% of CVS Standard	Retention Time
50 ug/ml CVS	38091409.D	8187830	100%	18.14
100 ug/ml LCS	38091410.D	7916251	97%	18.17
50 ug/ml CVS	38091413.D	8730504	100%	18.03
Method Blank	38091414.D	7737661	89%	18.15
8016-01	38091415.D	7693221	88%	18.05
Method Blank	38091417.D	8253986	115%	18.07
50 ug/ml CVS	38091418.D	7168204	100%	18.12
8016-04	38091419.D	6821940	95%	18.10

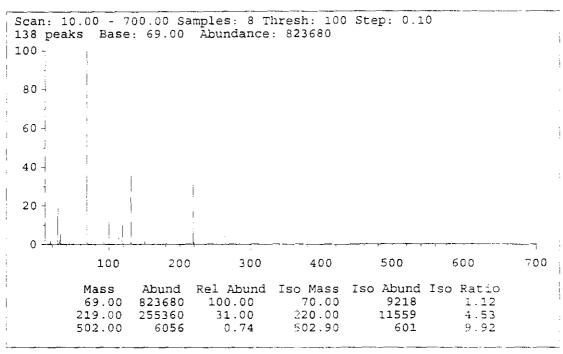
Acceptance Limits = Response (EICP area) must be within 50 - 200% of the response obtained in the daily CVS. Retention times must be +/-30 seconds from that in the daily CVS.

Surrogate Standards Summary Table

		2-Hexanone	Tetrachioroethylene
Sample Name	Data File	%Recovery	%Recovery
50 ug/ml CVS	38091409.D	120%	110%
100 ug/ml LCS	38091410.D	125%	108%
50 ug/ml CVS	38091413.D	121%	99%
8016-01	38091415.D	138%	102%
50 ug/ml CVS	38091418.D	92%	122%
8016-04	38091419.D	91%	97%

Acceptance Limit = 70 - 130% Recovery

MS Tunes and BFB Spectral Scans


HP5972 Standard Spectra AutoTune Instrument: 5972 INSTRUMENT 4 TEMP Mon Sep 14 09:29:56 1998 C:\HPG

C:\HPCHEM\4\5972\ATUNE.U

lass Ab	25910		133991		501.95 1 1556	EMVolts		AmuGain	54
w50	0.5	6 Pw50	0.55	Pw50	0.56	Xray Emission		AmuOffs Wid219	8 0.03
					:	MS Temp	168	TTI	OF
						Vacuum	91	DC Pol	NE
						Samples	8	Repeller	25.0
						Averages StepSize		IonFocus EntLens	82. 40.1
	: 1	:				MassGain		EntOffs	4.0
					:	MassOffs		Filament	
		i			•				
		!				P	FTBA	OPEN	
					:				
	٠								
	11	4							
	:								
	i i								
	The second secon		,						
	1 L			,	·				
can .29	peaks	216 - 700 Base:	221 .00 Samp 68.95 A	500 les: 8 bundanc	505 Thresh: e: 2280	100 Step	: 0.10		TO THE MEMORITAGE
Scan 129 100 - 80 - 40 -	: 10.00 peaks	- 700	.00 Samp	les: 8	Thresh:	100 Step 32	: 0.10		-
Scan 129 ; 100 - 80 -	: 10.00 peaks	- 700	.00 Samp	les: 8	Thresh:	100 Step	: 0.10		
Scan 129 100 - 80 - 40 -	: 10.00 peaks	- 700	.00 Samp	les: 8	Thresh:	100 Step 32	: 0.10		
Scan 129 100 - 80 -	: 10.00 peaks	- 700 Base:	.00 Samp	les: 8 bundanc	Thresh: e: 2280	32	,		
129 j 100 - 80 - 40 -	: 10.00 peaks	- 700	.00 Samp	les: 8	Thresh: e: 2280	32	: 0.10	600	700
Scan 129 100 - 80 - 40 -	: 10.00 peaks	- 700 Base:	200 Abund Re	les: 8 bundanc	Thresh: e: 22803	32 00 5 ass Iso A	00 bund I	so Ratio	700
Scan 129 100 - 80 - 40 -	: 10.00 peaks	- 700 Base:	200 Abund Re	les: 8 bundanc	Thresh: e: 22801	32 00 5 ass Iso A			——————————————————————————————————————

HP5972 BFB Dynamic Target Tune

Mon Sep 14 09:47 Mass 69.05 Mas		502.05	_C:\HPCHEM\4	\5972\B FB. U
Ab 911098 Ab Pw50 0.58 Pw5	302329 Ab	7357: EMVolts 0.57: Xray	2106 AmuGa 68.4 AmuO	
1	, 0.33 1.430	Emissio MS Temp		0.052 OFF
<u>.</u>		Vacuum	92 DC Pc	
		Samples Average		ller 20.83 ocus 86.0
1		StepSiz	e 0.10 EntLe	ens 0.00
		ˈMassGai MassOff		
		1		
		1	PFTBA OPI	ΞN
				:
!	;			
	į	i		!
	i A	t A		į
66 71 216	221 500	505		

TARGET MASS: 69 131 219 502 DYNAMIC ENT OFFSET: 17.3 14.6 14.8 22.3 0,8 TARGET ABUND(%): 100.0 35.0 30.0 ACTUAL TUNE ABUND(%): 100.0 37.8 31.0 0.7 Instrument: 5972 INSTRUMENT 4 TEMP
Mon Sep 14 11:03:53 1998 C:\HPCHEN

C:\HPCHEM\4\5972\380914BF.U

EMVolts Xray Emission MS Temp Vacuum	2106 68.4 35.0 172 91	AmuGain AmuOffs Wid219 TTI DC Pol	538 84 0.052 OFF NEG	111111111111111111111111111111111111111
Samples Averages StepSize MassGain MassOffs	8 3 0.10 216 0	Repeller IonFocus EntLens EntOffs Filament	20.83 86.0 22.09 VAR 2	

PFTBA OPEN

serial of 380914BF, U

Acq On : 14 Sep 98 11:39 am
Sample : Method Blank N-91-1-02.08

Misc Multiplr: 1.00

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis

Scan Number 3131

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.4	179763	PASS
75	95	30	60	42.7	469515	PASS
95	95	100	100	100.0	1099237	PASS
96	95	5	9	6.7	74007	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	97.2	1068432	PASS
175	174	5	9	7.5	80131	PASS
176	174	95	101	98.6	1053888	PASS
177	176	5	9	6.7	70234	PASS

38091401.D HEXONE.M Tue Sep 15 15:08:41 1998

Data File: C:\HPCHEM\1\DATA\HEXONE\38091409.D

15 Sep 98 12:59 pm
Operator: Bonfoey
Inst : 5972 INST Acq On : 15 Sep 98 12:59 pm Sample : 50 ug/L std N-91-1-21.04 Misc :

Multiplr: 1.00

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis

Scan Number 3131

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
	50 75 95 96 173 174 175	95 95 95 95 174 95 174	15 30 100 5 0 50 5	40 60 100 9 2 100 9	15.9 41.3 100.0 6.8 0.0 94.4 7.5 98.9	192629 498949 1208165 81770 0 1140176 85943 1127429	PASS PASS PASS PASS PASS PASS PASS PASS
	177	176	5	9	6.7	75918	PASS

38091409.D HEXONE.M Wed Sep 30 14:53:33 1998

Vial: 10

Data File : C:\HPCHEM\1\DATA\HEXONE\38091413.D
Acq On : 18 Sep 98 10:34 am
Sample : 50 ug/L std n-91-1-21.09

Via: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis

Scan Number 3131

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.5	235397	PASS
75	95	30	60	42.9	611599	PASS
95	95	100	100	100.0	1426900	PASS
96	95	5	9	6.8	96599	PASS
173	174	0	2	0.0) 0	PASS
174	95	50	100	94.7	1351887	PASS
175	174	5	9	7.6	102375	PASS
176	174	95	101	98.4	1330166	PASS
177	176	5	9	6.7	89564	PASS

38091413.D HEXONE.M Wed Sep 30 14:55:12 1998

Vial: 10

Data File : C:\HPCHEM\1\DATA\HEXONE\38091415.D
Acq On : 18 Sep 98 2:47 pm
Sample : 8016-01
Misc : Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis

Scan Number 3131

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%		
50	95	15	40	16.2	228964	PASS
75	95	30	60	41.9	593252	PASS
95	95	100	100	100.0	1414656	PASS
96	95	5	9	6.8	96313	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	93.4	1321287	PASS
175	174	5	9	7.6	100260	PASS
176	174	95	101	98.8	1305031	PASS
177	176	5	9	6.7	88002	PASS

38091415.D HEXONE.M Wed Sep 30 14:59:33 1998

Data File : C:\HPCHEM\1\DATA\HEXONE\38091416.D
Acq On : 23 Sep 98 11:38 am
Sample : 50 ug/L std N-91-1-22.01
Misc :

Vial: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis

Scan Number 3131

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.2	212397	PASS
75	95	30	60	42.3	552941	PASS
95	95	100	100	100.0	1307142	PASS
96	95	5	9	6.7	87301	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	94.7	1237638	PASS
175	174	5	9	7.5	93005	PASS
176	174	95	101	98.8	1222534	PASS
177	176	5	9	6.7	82218	PASS

38091416.D HEXONE.M Wed Sep 30 14:58:17 1998

82300-FAST-98-100

BFB

Vial: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00 Data File : C:\HPCHEM\1\DATA\HEXONE\38091419.D
Acq On : 23 Sep 98 4:11 pm
Sample : 8016-04 N-91-1-22.04

Misc

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis

Scan Number 3131

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	16.0	182616	PASS
75	95	30	60	41.2	471352	PASS
95	95	100	100	100.0	1143768	PASS
96	95	5	9	6.7	76869	PASS
173	174	0	2	0.0	\ o	PASS
174	95	50	100	93.1	1065040	PASS
175	174	5	9	7.4	79135	PASS
176	174	95	101	98.6	1050600	PASS
177	176	5	9	6.7	70012	PASS

38091419.D HEXONE.M Wed Sep 30 14:58:59 1998

Initial Calibration Data

Response Factor Report 5972 INST

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Initial Calibration

Calibration Files

50 =38091405.D 5 =38091402.D 10 =38091403.D 25 =38091404.D 100 =38091406.D 200 =38091407.D

50 5 10 25 100 200 Avg %RSD Compound a,a,a-Trifluorotoluen ------ISTD------

1) 2) MIBK 0.123 0.132 0.136 0.120 0.123 0.122 0.126 5.00 3) S 2-Hexanone 0.076 0.080 0.082 0.076 0.074 0.075 0.077 3.91 4) S Tetrachloroethylene 0.635 0.665 0.719 0.626 0.656 0.646 0.658 5.00 5) 4-Bromofluorobenzen 0.642 0.643 0.660 0.645 0.657 0.661 0.651 1.35

(#) = Out of Range

Wed Sep 30 13:30:11 1998 HEXONE.M

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091402.D Vial: 2

Acq On : 14 Sep 98 12:40 pm Sample : 5 ug/L std N-91-1-20.09 Operator: Bonfoey Inst : 5972 INST

Misc Multiplr: 1.00

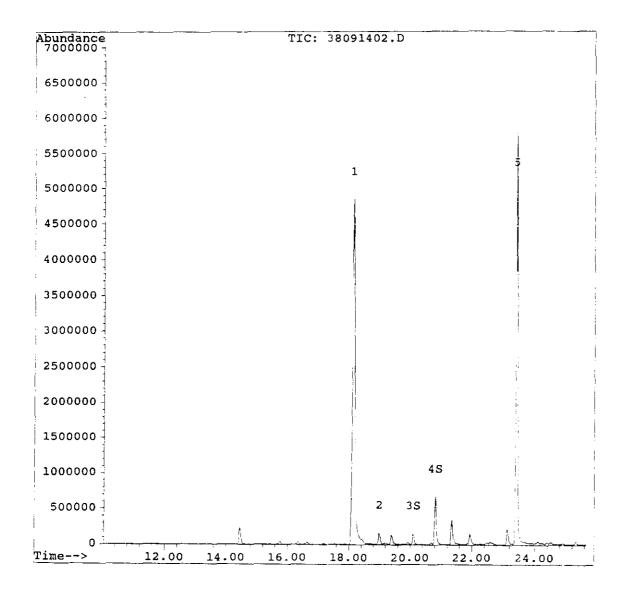
Quant Time: Oct 6 11:30 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.14	146	6938699	50.00	ug/L	-0.01
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.10	100 166	55074 461225		ug/L	Recovery 10.29% 10.11%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.99 23.42	100 95	88670 4462970	5.08 49.37	ug/L ug/L	Qvalue m 1 99

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091402.D


Vial: 2 Acq On : 14 Sep 98 12:40 pm Sample : 5 ug/L std N-91-1-20.09 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00 Misc

Quant Time: Oct 6 11:30 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method

: Hexone Analysis Title

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091402.D HEXONE.M

Tue Oct 06 11:30:30 1998

Page 2

82300-FAST-98-100

Quantitation Report

Vial: 3

Data File : C:\HPCHEM\1\DATA\HEXONE\38091403.D Acq On : 14 Sep 98 1:14 pm Sample : 10 ug/L std N-91-1-20.10 Operator: Bonfoey Inst : 5972 INST

Misc Multiplr: 1.00

Quant Time: Oct 6 11:31 1998

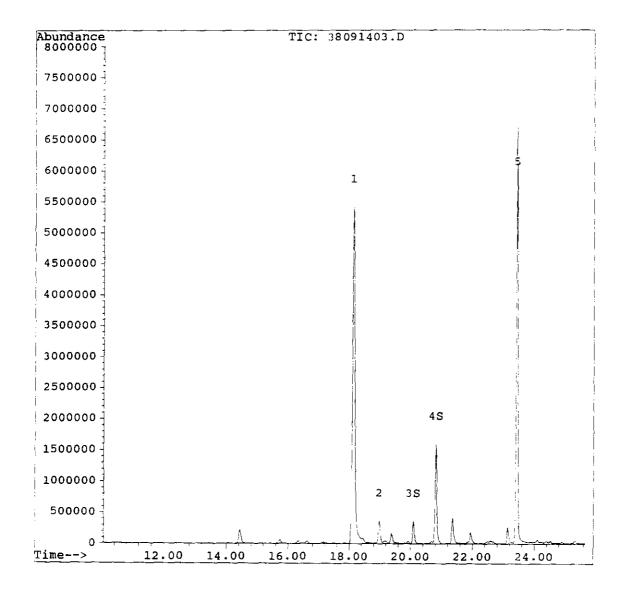
Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) a,a,a-Trifluorotoluene	18.12	146	7793759	50.00 ug/L -0.03
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.09	100 166	127361 1120060	*Recovery 10.59 ug/L 21.18* 10.93 ug/L 21.85*
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.98 23.42	100 95	211807 5143320	Qvalue 10.79 ug/L m 1 50.66 ug/L 99

^{(#) =} qualifier out of range (m) = manual integration 38091403.D HEXONE.M Tue Oct 06 11:31:30 1998 Page 1

Vial: 3

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091403.D


: 14 Sep 98 1:14 pm : 10 ug/L std N-91-1-20.10 Operator: Bonfoey Acq On Inst : 5972 INST Sample Multiplr: 1.00

Misc

Quant Time: Oct 6 11:31 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091403.D HEXONE.M

Tue Oct 06 11:31:31 1998

Page 2

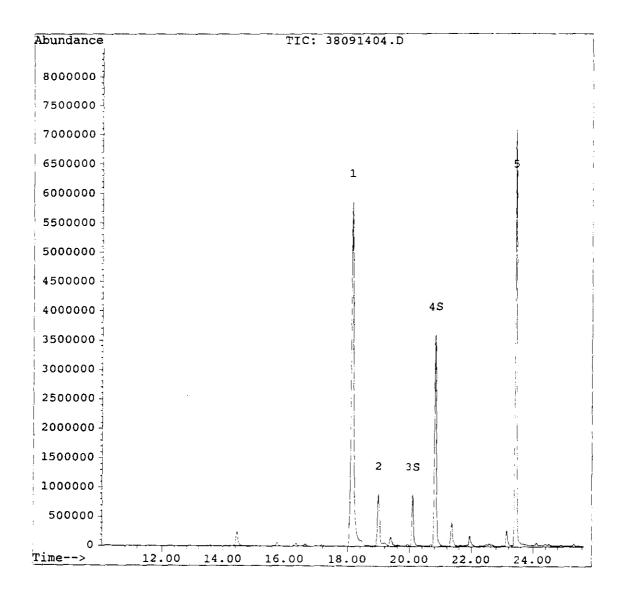
Data File : C:\HPCHEM\1\DATA\HEXONE\38091404.D Vial: 4

Acq On : 14 Sep 98 1:49 pm Sample : 25 ug/L std N-91-1-20.11 Misc : Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Quant Time: Oct 6 14:30 1998

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.14	146	8523510	50.00 ug/L	-0.01
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.09	100 166	324569 2668386	%F 24.68 ug/L 23.80 ug/L	Recovery 49.36% 47.60%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.99 23.42	100 95	511974 5500877	23.86 ug/L 49.54 ug/L	Qvalue 95 99

Data File : C:\HPCHEM\1\DATA\HEXONE\38091404.D


Vial: 4 Acq On : 14 Sep 98 1:49 pm Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00 : 25 ug/L std N-91-1-20.11 Sample

Misc Quant Time: Oct 6 14:30 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

: Hexone Analysis Title

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091404.D HEXONE.M

Tue Oct 06 14:30:55 1998

Vial: 5 Data File : C:\HPCHEM\1\DATA\HEXONE\38091405.D

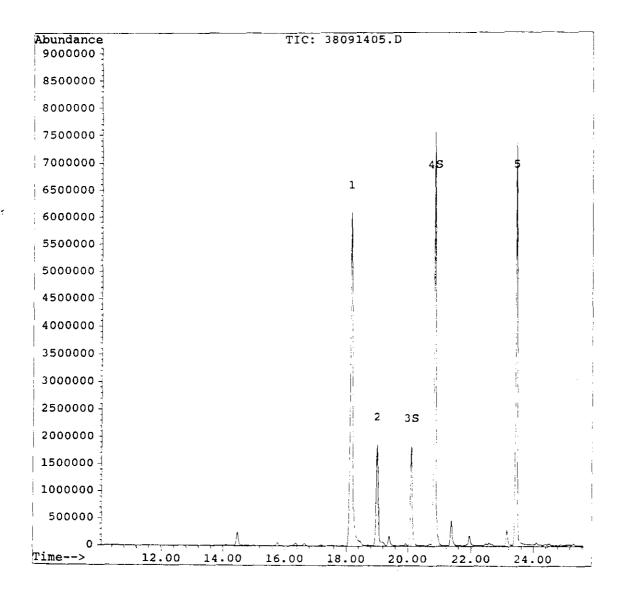
Acq On : 14 Sep 98 2:24 pm Sample : 50 ug/L std N-91-1-20.12 Operator: Bonfoey Inst : 5972 INST

Multiplr: 1.00 Misc

Quant Time: Oct 6 11:31 1998

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.15	146	8821831	50.00 ug/L	0.00
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.11	100 166	674100 5599068	%R 49.52 ug/L 48.25 ug/L	ecovery 99.05% 96.51%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.01 23.44	100 95	1083853 5663663	48.80 ug/L 49.28 ug/L	Qvalue 95 99

Data File : C:\HPCHEM\1\DATA\HEXONE\38091405.D


Vial: 5 Operator: Bonfoey Inst : 5972 INST : 14 Sep 98 2:24 pm Acq On : 50 ug/L std N-91-1-20.12 Sample Multiplr: 1.00

Misc Quant Time: Oct 6 11:31 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091405.D HEXONE.M

Tue Oct 06 11:32:43 1998

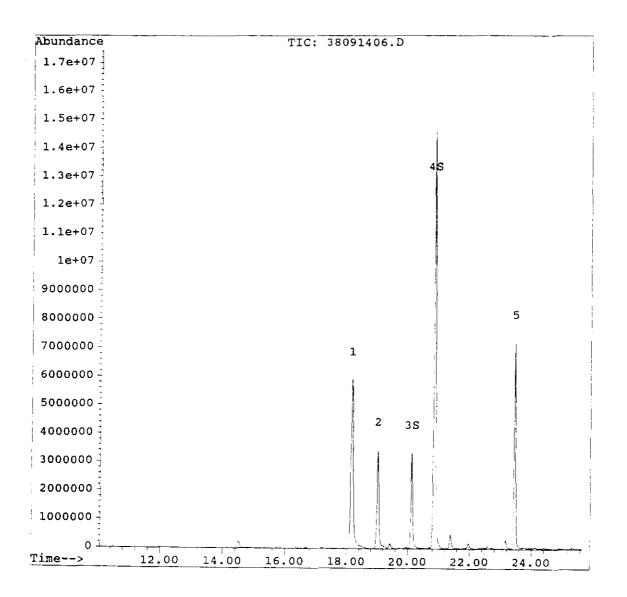
Vial: 6 Data File : C:\HPCHEM\1\DATA\HEXONE\38091406.D

Acq On : 14 Sep 98 2:59 pm Sample : 100 ug/L std N-91-1-20.13 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Quant Time: Sep 14 15:58 1998

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.16	146	8662030	50.00 ug/L	0.01
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.12	100 166	1285081 11358845	%I 96.15 ug/L 99.70 ug/L	
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.02 23.44	100 95	2135113 56 8 9663	97.91 ug/L 50.42 ug/L	Qvalue 99 99

^{(#) =} qualifier out of range (m) = manual integration 38091406.D HEXONE.M Tue Oct 06 11:33:23 1998 Page 1


Data File : C:\HPCHEM\1\DATA\HEXONE\38091406.D

Vial: 6 Acq On : 14 Sep 98 2:59 pm Sample : 100 ug/L std N-91-1-20.13 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc Quant Time: Sep 14 15:58 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998
Response via : Multiple Level Calibration

38091406.D HEXONE.M

Tue Oct 06 11:33:24 1998

Page 2

82300-FAST-98-100

Quantitation Report

Vial: 7 Data File : C:\HPCHEM\1\DATA\HEXONE\38091407.D

Operator: Bonfoey Acq On : 14 Sep 98 3:33 pm Sample : 200 ug/L std N-91-1-20.14 Misc : Inst : 5972 INST

Multiplr: 1.00 Misc

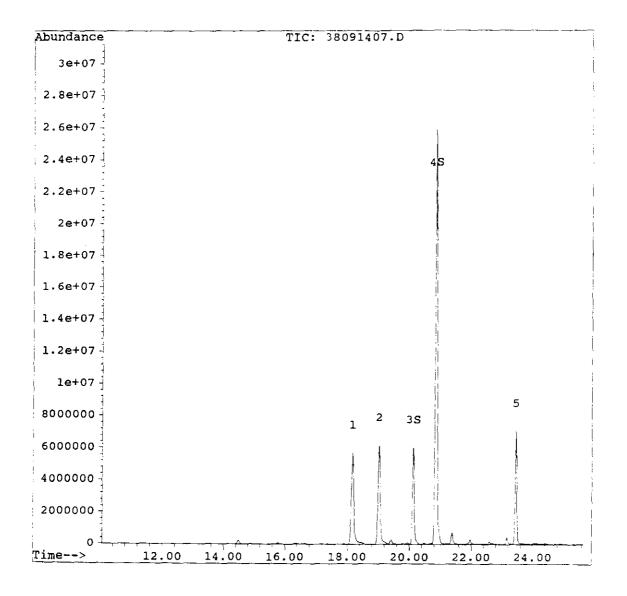
Quant Time: Sep 14 15:51 1998

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.16	146	8352203	50.00 ug/L	0.00
System Monitoring Compounds 3) 2~Hexanone 4) Tetrachloroethylene	20.12	_	2 49 0072 21589228	%1 191.92 ug/L 195.84 ug/L	
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.01 23.44	100 95	4062810 5519820	191.91 ug/L 13.78 ug/L	Qvalue 98 98

Vial: 7

Quantitation Report

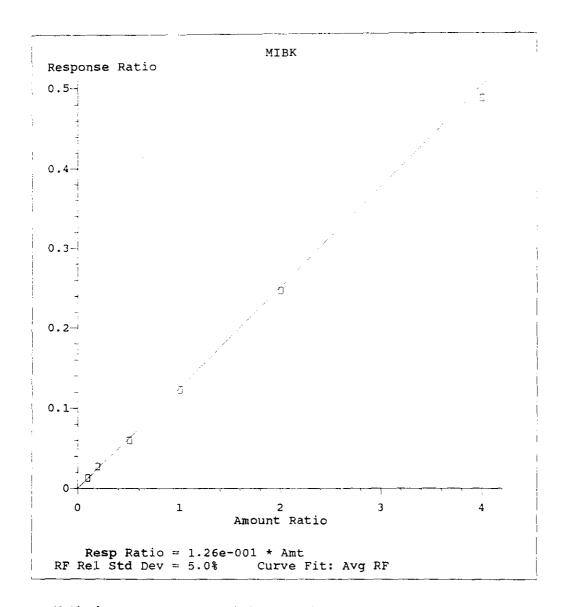
Data File : C:\HPCHEM\1\DATA\HEXONE\38091407.D

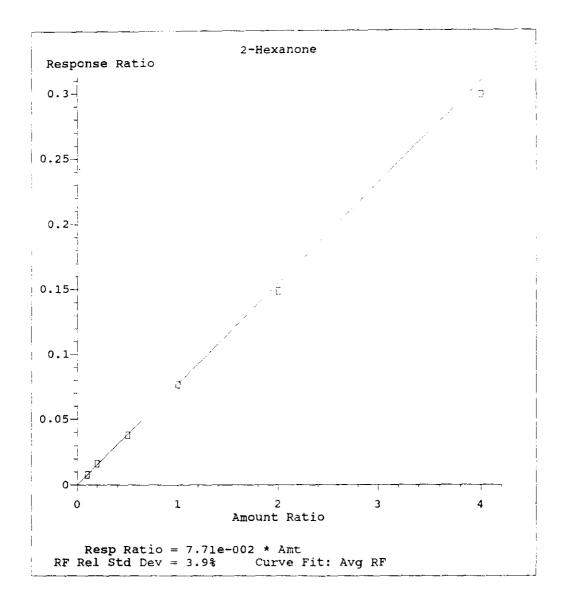

Acq On : 14 Sep 98 3:33 pm Sample : 200 ug/L std N-91-1-20.14 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc

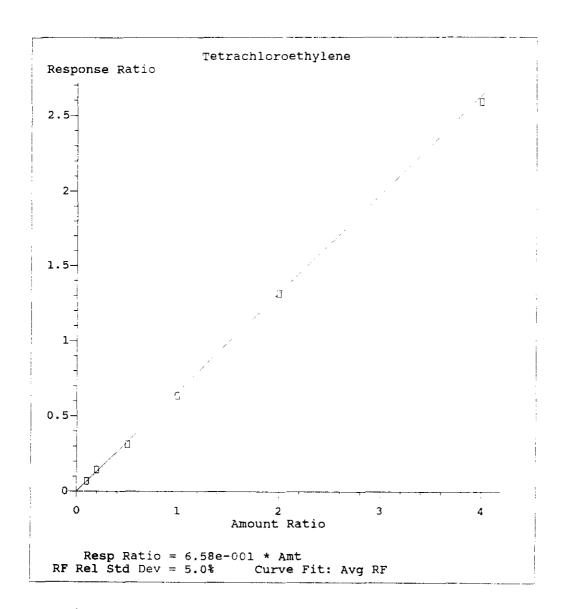
Quant Time: Sep 14 15:51 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method


Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via: Multiple Level Calibration


38091407.D HEXONE.M

Tue Oct 06 11:34:50 1998


Page 2

Method Name: C:\HPCHEM\2\METHODS\HEXONE.M Calibration Table Last Updated: Mon Sep 14 15:53:28 1998

Method Name: C:\HPCHEM\2\METHODS\HEXONE.M
Calibration Table Last Updated: Mon Sep 14 15:53:28 1998

Method Name: C:\HPCHEM\2\METHODS\HEXONE.M
Calibration Table Last Updated: Mon Sep 14 15:53:28 1998

Sample Analysis Data

Vial: 9

Data File : C:\HPCHEM\1\DATA\HEXONE\38091409.D
Acq On : 15 Sep 98 12:59 pm
Sample : 50 ug/L std N-91-1-21.04 Operator: Bonfoey Inst : 5972 INST Misc Multiplr: 1.00

Quant Time: Sep 15 13:28 1998

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) a,a,a-Trifluorotoluene	18.14	146	8187830	50.00 ug/L -0	0.01
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.10	100 166	755085 5932493	*Reco 59.77 ug/L 119 55.09 ug/L 110	3.54%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.00 23.43	100 95	1188065 5309620	Qva 57.64 ug/L 49.78 ug/L	97 99

^{(#) =} qualifier out of range (m) = manual integration 38091409.D HEXONE.M Thu Oct 01 10:12:29 1998

Evaluate Continuing Calibration Report

Vial: 9

Data File : C:\HPCHEM\1\DATA\HEXONE\38091409.D
Acq On : 15 Sep 98 12:59 pm
Sample : 50 ug/L std N-91-1-21.04
Misc :

Operator: Bonfoey
Inst : 5972 INST

Multiplr: 1.00

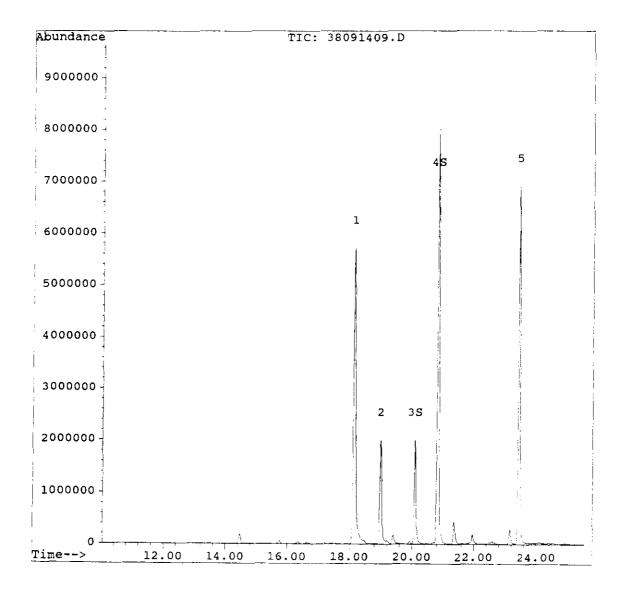
: C:\HPCHEM\2\METHODS\HEXONE.M

Method : C:\HPCHEM\2\METHODS\HEXON
Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1	a,a,a-Trifluorotoluene	1.000	1.000	0.0 93 -0.01
2	MIBK	0.126	0.145	-15.3 110 -0.01
3 S	2-Hexanone	0.077	0.092	-19.5 112 -0.01
4 S	Tetrachloroethylene	0.658	0.725	-10.2 106 0.00
5	4-Bromofluorobenzene	0.651	0.648	0.4 94 -0.01


(#) = Out of Range SPCC's out = 0 CCC's out = 0 38091405.D HEXONE.M Wed Sep 30 13:35:24 1998

Data File : C:\HPCHEM\1\DATA\HEXONE\38091409.D Acq On : 15 Sep 98 12:59 pm Sample : 50 ug/L std N-91-1-21.04 Vial: 9 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc Quant Time: Sep 15 13:28 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998
Response via : Multiple Level Calibration

38091409.D HEXONE.M

Wed Sep 30 15:45:24 1998

Page 2

Vial: 9
Operator: Bonfoey
Inst : 5972 INST
Multiplr: 1.00 Data File : C:\HPCHEM\1\DATA\HEXONE\38091410.D
Acq On : 15 Sep 98 2:02 pm
Sample : 100 ug/L LCS N-91-1-21.05

Misc

Quant Time: Sep 30 13:39 1998

: C:\HPCHEM\2\METHODS\HEXONE.M
: Hexone Analysis Title

Method

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

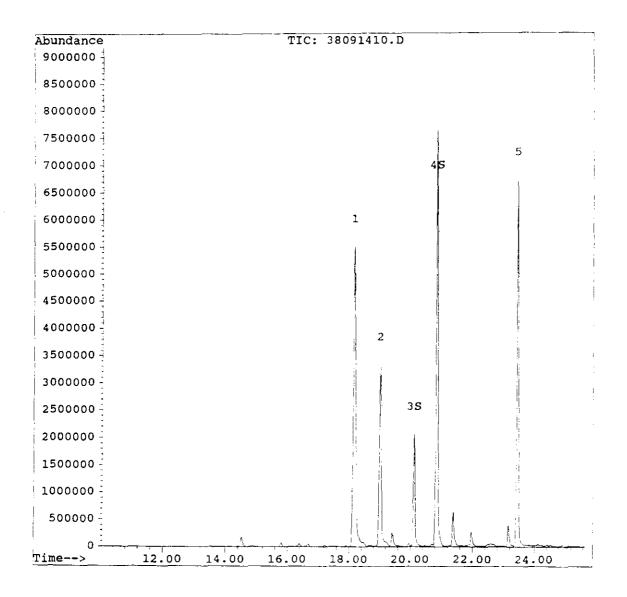
Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) a,a,a-Trifluorotoluene	18.17	146	7916251	50.00 ug/L 0.02	
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.12	100 166	765576 5 636447	%Recover 62.68 ug/L 125.35 54.13 ug/L 108.26	용
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.02 23.45	100 95	2010279 5213167	Qvalue 100.87 ug/L 98 50.55 ug/L 99	

^{(#) =} qualifier out of range (m) = manual integration
38091410.D HEXONE.M Wed Sep 30 13:40:15 1998 38091410.D HEXONE.M

Vial: 9

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091410.D
Acq On : 15 Sep 98 2:02 pm
Sample : 100 ug/L LCS N-91-1-21.05 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00


Misc

Quant Time: Sep 30 13:39 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method

Title : Hexone Analysis

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091410.D HEXONE.M

Tue Oct 06 14:27:42 1998

Vial: 10 Data File : C:\HPCHEM\1\DATA\HEXONE\38091413.D Operator: Bonfoey Acq On : 18 Sep 98 10:34 am Inst : 5972 INST Multiplr: 1.00 : 50 ug/L std n-91-1-21.09 Sample Misc

Quant Time: Sep 18 10:59 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) a,a,a-Trifluorotoluene	18.03	146	8730504	50.00 ug/L -0.12
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.01	100 166	816624 5687903	*Recovery 60.62 ug/L 121.24* 49.53 ug/L 99.06*
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.90 23.33	100 95	1216420 6233348	Qvalue 55.34 ug/L 94 54.81 ug/L 98

^{(#) =} qualifier out of range (m) = manual integration 38091413.D HEXONE.M Wed Sep 30 13:43:08 1998

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091413.D
Acq On : 18 Sep 98 10:34 am
Sample : 50 ug/L std n-91-1-21.09
Misc : Vial: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

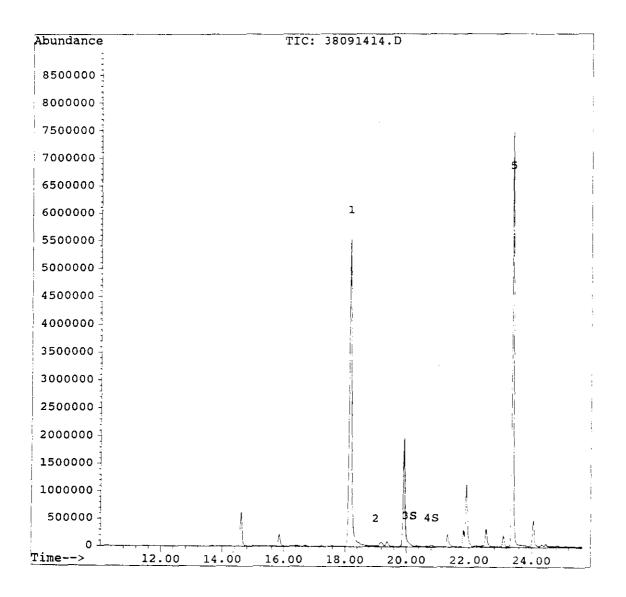
	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1	a,a,a-Trifluorotoluene	1.000	1.000	0.0 99 -0.12
2	MIBK	0.126	0.139	-10.7 112 -0.11
3 S	2-Hexanone	0.077	0.094	-21.2 121 -0.10
4 S	Tetrachloroethylene	0.658	0.651	0.9 102 -0.10
5	4-Bromofluorobenzene	0.651	0.714	-9.6 110 -0.11

(#) = Out of Range SPCC's out = 0 CCC's out = 0 38091405.D HEXONE.M Mon Oct 05 10:57:02 1998

Data File : C:\HPCHEM\1\DATA\HEXONE\38091414.D
Acq On : 18 Sep 98 11:46 am
Sample : Method Blank N-91-1-21.10
Misc : Vial: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Quant Time: Sep 30 13:23 1998

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)	1
1) a,a,a-Trifluorotoluene	18.15	146	7737661	50.00 ug/L 0.00	-
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.08	100 166	3285 20131	%Recovery 0.28 ug/L 0.55% 0.20 ug/L 0.40%	
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	19.00 23.37	100 95	2857 5719406	Qvalue 0.15 ug/L m 1 56.74 ug/L 98	


^{(#) =} qualifier out of range (m) = manual integration 38091414.D HEXONE.M Wed Sep 30 13:25:00 1998

Data File : C:\HPCHEM\1\DATA\HEXONE\38091414.D
Acq On : 18 Sep 98 11:46 am
Sample : Method Blank N-91-1-21.10 Vial: 10 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc Quant Time: Oct 6 14:35 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method

Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

38091414.D HEXONE.M

Tue Oct 06 14:35:05 1998

Vial: 10 Data File : C:\HPCHEM\1\DATA\HEXONE\38091415.D Acq On : 18 Sep 98 2:47 pm Sample : 8016-01 Misc : Operator: Bonfoey Inst : 5972 INST

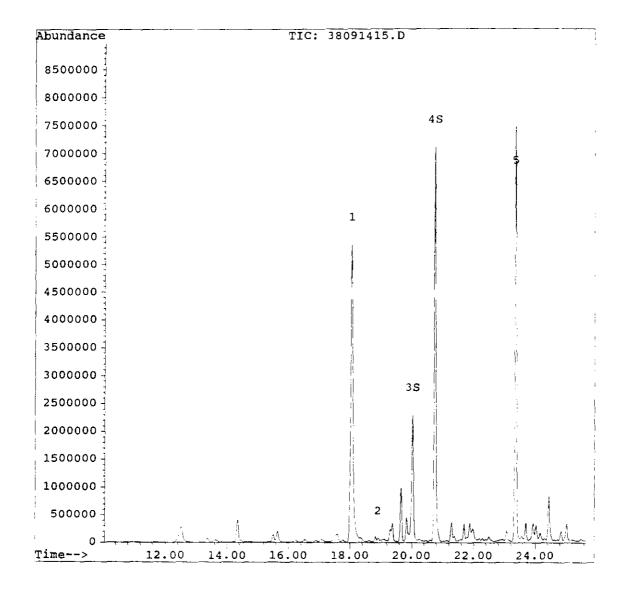
Multiplr: 1.00

Quant Time: Sep 18 15:52 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) a,a,a-Trifluorotoluene	18.05	146	7693221	50.00 ug/L -0.10
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.02	100 166	818612 5185671	*Recovery 68.96 ug/L 137.92* 51.25 ug/L 102.49*
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.91 23.35	100 95	6252 5676890	Qvalue 0.32 ug/L # 58 56.64 ug/L 98

^{(#) =} qualifier out of range (m) = manual integration
38091415.D HEXONE.M Wed Sep 30 13:44:53 1998


Data File : C:\HPCHEM\1\DATA\HEXONE\38091415.D

Vial: 10 : 18 Sep 98 2:47 pm Operator: Bonfoey Acq On Sample : 8016-01

Inst : 5972 INST
Multiplr: 1.00 Misc

Quant Time: Sep 18 15:52 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Data File : C:\HPCHEM\1\DATA\HEXONE\38091417.D Vial: 10

Acq On : 23 Sep 98 2:38 pm Sample : Method Blank N-91-1-22.02 Misc : Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00

Misc

Quant Time: Sep 29 10:58 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

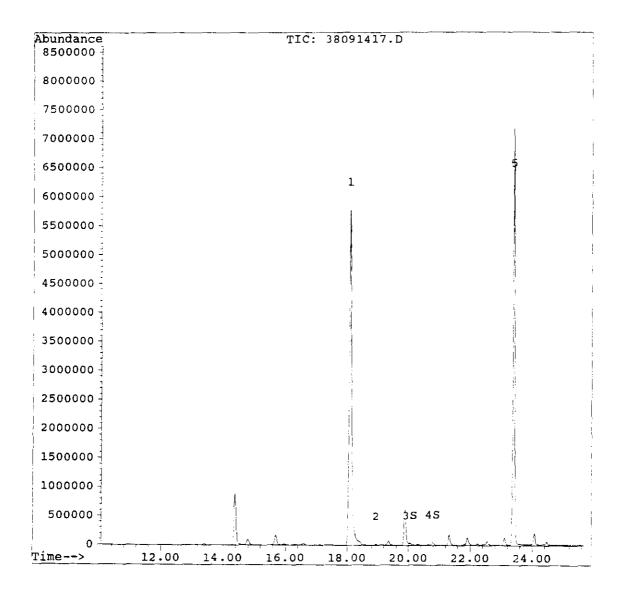
Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.07	146	8253986	50.00	ug/L	-0.08
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.05	100 166	7072 39519		ug/L	Recovery 1.11% 0.73%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.94 23.37	100 95	10159 5434399	0.49 50.54	ug/L ug/L	Qvalue m 1 99

^{(#) =} qualifier out of range (m) = manual integration 38091417.D HEXONE.M Wed Sep 30 14:45:27 1998

Vial: 10

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091417.D


Acq On : 23 Sep 98 2:38 pm Sample : Method Blank N-91-1-22.02 Operator: Bonfoey Inst : 5972 INST

Multiplr: 1.00 Misc

Quant Time: Sep 29 10:58 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method

Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998
Response via : Multiple Level Calibration

38091417.D HEXONE.M

Tue Sep 29 10:59:03 1998

Page 2

82300-FAST-98-100

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091418.D Vial: 10

Acq On : 23 Sep 98 3:15 pm Sample : 50 ug/L std N-91-1-22.03 Operator: Bonfoey
Inst : 5972 INST

Multiplr: 1.00 Misc

Quant Time: Sep 29 10:55 1998

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) a,a,a-Trifluorotoluene	18.12	146	7168204	50.00 ug/L	-0.03
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.07	100 166	510876 5768320		Recovery 92.38% 122.36%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.97 23.39	100 95	868020 5165901	48.10 ug/L 55.32 ug/L	Qvalue 95 98

^{(#) =} qualifier out of range (m) = manual integration 38091418.D HEXONE.M Wed Sep 30 14:46:22 1998

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091418.D Vial: 10

Operator: Bonfoey Acq On : 23 Sep 98 3:15 pm Sample : 50 ug/L std N-91-1-22.03 Inst : 5972 INST Multiplr: 1.00

Misc

Method : C:\HPCHEM\2\METHODS\HEXONE.M
Title : Hexone Analysis
Last Update : Mon Sep 14 15:53:28 1998
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
a,a,a-Trifluorotoluene MIBK SC-Hexanone Tetrachloroethylene 4-Bromofluorobenzene	1.000 0.126 0.077 0.658 0.651	1.000 0.121 0.071 0.805 0.721	0.0 3.8 7.6 -22.4 -10.6	80 76 103	-0.03

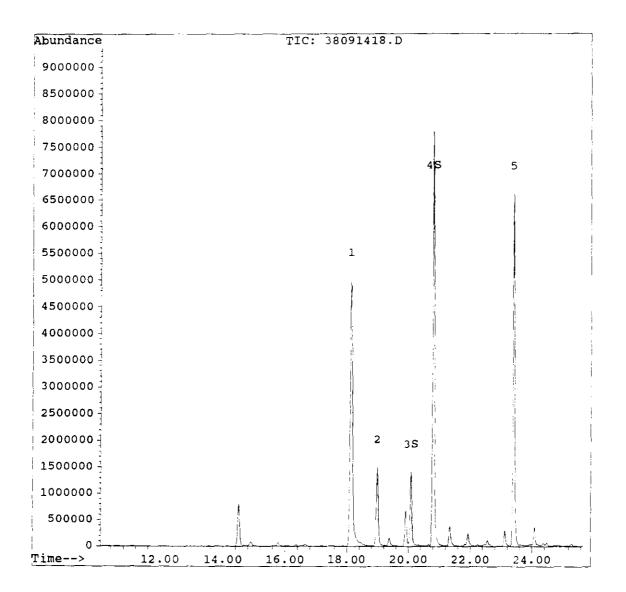
(#) = Out of Range SPCC's out = 0 CCC's out = 0 38091405.D HEXONE.M Mon Oct 05 11:30:35 1998

Vial: 10

Quantitation Report

Data File : C:\HPCHEM\1\DATA\HEXONE\38091418.D

Acq On : 23 Sep 98 3:15 pm Sample : 50 ug/L std N-91-1-22.03 Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00


Misc

Quant Time: Sep 29 10:55 1998

: C:\HPCHEM\2\METHODS\HEXONE.M Method

: Hexone Analysis

Last Update : Mon Sep 14 15:53:28 1998 Response via : Multiple Level Calibration

82300-FAST-98-100

Quantitation Report

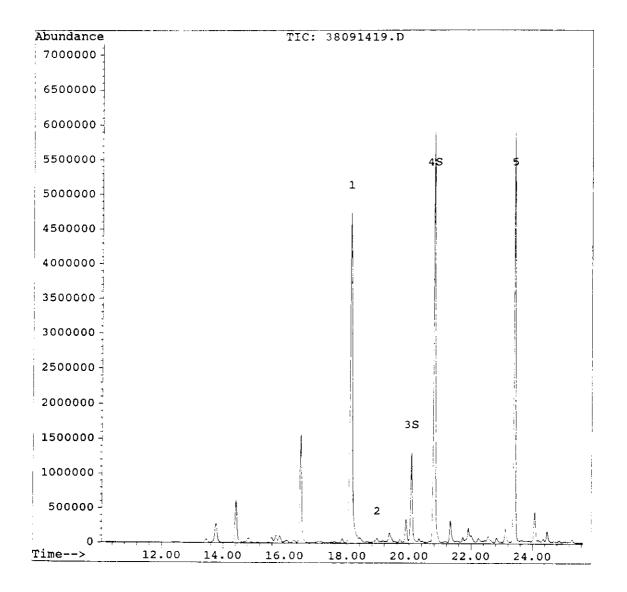
Data File : C:\HPCHEM\1\DATA\HEXONE\38091419.D Vial: 10

Operator: Bonfoey Inst : 5972 INST Multiplr: 1.00 Acq On : 23 Sep 98 4:11 pm Sample : 8016-04 N-91-1-22.04

Misc Quant Time: Sep 30 14:47 1998

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) a,a,a-Trifluorotoluene	18.10	146	6821940	50.00 ug/L -0.05
System Monitoring Compounds 3) 2-Hexanone 4) Tetrachloroethylene	20.06 20.79	100 166	477295 4332395	%Recovery 45.34 ug/L 90.69% 48.28 ug/L 96.56%
Target Compounds 2) MIBK 5) 4-Bromofluorobenzene	18.97 23.39	100	24003 4508795	Qvalue 1.40 ug/L m 1 50.73 ug/L 98

^{(#) =} qualifier out of range (m) = manual integration 38091419.D HEXONE.M Wed Sep 30 14:47:27 1998


Misc : Multiplr: 1.00

Quant Time: Sep 29 10:54 1998

Method : C:\HPCHEM\2\METHODS\HEXONE.M

Title : Hexone Analysis

Last Update : Mon Sep 14 15:53:28 1998
Response via : Multiple Level Calibration

38091419.D HEXONE.M

Tue Sep 29 10:55:39 1998

Page 2

End of Package

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Addressee

Correspondence No.

R. A. Esch, WMH 373-4314 J. H. Kessner, BHI H9-03

WMH-9860237

December 3, 1998

Subject: FINAL REPORT FOR THE REDUCTION OXIDATION FACILITY (202-S) PLUTONIUM LOADOUT HOOD SAMPLES

DISTRIBUTION					
Approval	Date	Name	Location	w/att	
		Correspondence Control	A3-01	Χ	
		<u>Waste Management Federal</u>	Services of Hanford	d, Inc.	
		E. S. Aromi	H6-10	χ	
		B. V. Burrow	H6-30	Χ	
		R. A. Esch	T6-12	χ	
lignantes	Mars 12/4/9	§ D. B. Hardy	T6-12	Χ	
Fir the	it 12/7/98	_ J. E. Hyatt	T6-14	Χ	
' ''	. ,	M. F. Marcus	T6-03	Χ	
		J. O. Perkins	H6-30	Χ	
		T. J. Plush	H6-10	Χ	
		K. L. Powell	S3-30	Χ	
		D. L. Renberger	T3-03	Χ	
		C. M. Seidel	S 3 -30	χ	
		R. T. Wilde	H6-10	χ	
		RAE File/LB		χ	